用户名: 密码: 验证码:
陶瓷髋关节股骨头直径尺寸与动态微分离条件下边缘负载的关系
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Relationship between femoral head diameter and edge load under dynamic micro-separation of ceramic hip joints
  • 作者:廉超 ; 张茂荣 ; 王俊元 ; 成博 ; 刘峰
  • 英文作者:Lian Chao;Zhang Maorong;Wang Junyuan;Cheng Bo;Liu Feng;School of Mechanical Engineering, North University of China;
  • 关键词:人工髋关节 ; 边缘负载接触 ; 初始分离距离 ; 多体动力学模型 ; 体积磨损度量指数 ; 股骨头尺寸 ; 国家自然科学基金
  • 英文关键词:artificial hip joint;;edge load contact;;dynamic separation distance;;multi-body dynamics model;;severity of edge contact;;femoral head size;;the National Natural Science Foundation of China
  • 中文刊名:XDKF
  • 英文刊名:Chinese Journal of Tissue Engineering Research
  • 机构:中北大学机械工程学院;
  • 出版日期:2019-08-07
  • 出版单位:中国组织工程研究
  • 年:2019
  • 期:v.23;No.889
  • 基金:国家自然科学基金(21604074),项目负责人:成博~~
  • 语种:中文;
  • 页:XDKF201932003
  • 页数:7
  • CN:32
  • ISSN:21-1581/R
  • 分类号:7-13
摘要
背景:建立人工髋关节动力学仿真模型能有效模拟人体髋关节股骨头与臼杯动态分离过程,并探究股骨头与臼杯分离条件下的边缘接触现象。目的:研究人工髋关节股骨头假体直径尺寸对髋关节动态微分离下边缘负载的影响,为陶瓷髋关节因边缘负载产生的早期高磨损问题提供生物力学分析基础,也为髋关节假体设计和临床应用提供理论依据。方法:利用前期已经验证过的仿真模拟方法,即基于Adams动力学仿真软件的人工髋关节边缘接触的动力学模型,模拟髋关节在步态周期内发生动态微分离和边缘接触的现象。结果与结论:(1)髋关节臼杯与股骨头动态微分离产生边缘负载的最大接触力值随股骨头尺寸增大而小幅减小;(2)髋关节假体体积磨损度量指数,即边缘接触力与其作用时间的乘积,随股骨头尺寸增大而增大,直径36 mm股骨头髋关节假体的磨损度量指数比直径28 mm股骨头髋关节假体大0.6%,直径55 mm股骨头髋关节假体磨损度量指数比直径28mm,36mm股骨头髋关节假体大2.7%;(3)提示陶瓷髋关节股骨头尺寸变化对边缘负载接触力影响较小。
        BACKGROUND: The dynamic computational model of artificial hip joints can effectively simulate the dynamic separation of femoral head and acetabular cup and explore edge contact between the head and cup. OBJECTIVE: To study the effect of the femoral head diameter on the edge load under dynamic micro-separation of hip joints, to provide a basis for biomechanical analysis of ceramic hip joints corresponding to early high wear problems caused by edge loading, and provide theoretical analyses for hip prosthesis design and clinical application. METHODS: Using the previously validated method, the dynamic model of artificial hip joint for edge contact based on Adams dynamic simulation software was used to predict dynamic micro-separation and edge contact force in the gait cycle of the hip joint. RESULTS AND CONCLUSION:(1) The maximum contact force of the edge loading under micro-separation of the cup and femoral head slightly reduced as the femoral head size increased.(2) The severity of edge contact was computed as the product of the edge contact force and its acting time. The severity parameter of φ36 mm head was 0.6% larger than that of φ28 mm one. The parameter of diameter 55 mm hip was 2.7% larger than that of φ28 mm and φ36 mm heads.(3) The change of the ceramic hip femoral head size has negligible effect on the edge loading.
引文
[1]Mak M,Jin Z,Fisher J,et al.Influence of acetabular cup rim design on the contact stress during edge loading in ceramic-on-ceramic hip prostheses.J Arthroplasty.2011;26(1):131-136.
    [2]Hua X,Wang L,Al-Hajjar M,Jin Z,et al.Experimental validation of finite element modelling of a modular metal-on-polyethylene total hip replacement.Proc Inst Mech Eng H.2014;228:682-692.
    [3]Brodner W,Grubl A,Jankovsky R,et al.Cup inclination and serum concentration of cobalt and chromium after metal-on-metal total hip arthroplasty.J Arthroplasty.2004;19:66-70.
    [4]冯莉,王俊元,刘峰,等.陶瓷髋关节球头与臼杯分离引起边缘负载的动力学仿真模拟[J].中国组织工程研究,2018,22(7):985-990.
    [5]Hjorth MH,Mechlenburg I,Soballe K,et al.Higher prevalence of mixed or solid pseudotumors in metal-on-polyethylene total hip arthroplasty compared with metal-on-metal total hip arthroplasty and resurfacing hip arthroplasty.J Arthroplasty.2018;33(7):2279-2286.
    [6]Williams S,Butterfield M,Stewart T,et al.Wear and deformation of ceramic-on-polyethylene total hip replacements with joint laxity and swing phase microseparation.Proc Inst Mech Eng[H].2003;217:147-153.
    [7]Williams S,Butter S,Stewart T,et al.Wear and deformation of ceramic-on-polyethylene total hip replacements with joint laxity and swing phase microseparation.Proc Inst Mech Eng.2003;217(2):147-153.
    [8]Komistek RD,Dennis DA,Ochoa JA,et al.In vivo comparison of hip separation after metal-on-metal or metal-onpolyethylene total hip arthroplasty.J Bone Joint Surg Am.2002;84:1836-1841.
    [9]Dennis DA,Komistek RD,Northcut EJ,et al.“In vivo”determination of hip joint separation and the forces generated due to impact loading conditions.J Biomech.2001;34(5):623-629.
    [10]Glaser D,Komistek RD,Cates HE,et al.Clicking and squeaking:in vivo correlation of sound and separation for different bearing surfaces.J Bone Joint Surgam.2008;90Suppl 4:112-120.
    [11]Nevelos J,Ingham C,Doyle R,et al.Micro-separation of the centers of alumina-alumina artificial hip joints during simulator testing produces clinically relevant wear rates and patterns.J Arthroplasty.2000;15(6):793-795.
    [12]Lusty PJ,Watson A,Tuke MA,et al.Wear and acetabular component orientation in third generation alumina-on-alumina ceramic bearings:an analysis of 33 retrievals.J Bone Jt Surg(Br).2007;89B(9):1158-1164.
    [13]Al-Hajjar M,Fisher J,Tipper JL,et al.Wear of 36-mm BIOLOX(R)delta ceramic-on-ceramic bearing in total hip replacements under edge loading conditions.Proc Inst Mech Eng H.2013;227(5):535-542.
    [14]Parkes M,Sayer K,Goldhofer M,et al.Zirconia phase transformation in retrieved,wear simulated,and artificially aged ceramic femoral heads.J Orthop Res.2017;35(12):2781-2789.
    [15]Saverio A,Francesco T,Aldo T.Microseparation and stripe wear in alumina-on-alumina hip implants.Int J Artif Organs.2011;34(6):506-512.
    [16]Wang L,Williams S,Udofia I,et al.The effect of cup orientation and coverage on contact mechanics and range of motion of metal-on-metal hip resurfacing arthroplasty.Proc Inst Mech Eng H.2012;226(11):877-886.
    [17]Fisher J.Bioengineering reasons for the failure of metal-on-metal hip prostheses:an engineer’s perspective.JBone Joint Surg Br.2011;93:1001-1004.
    [18]Bouziane MM,Benbarek S,Tabeti SMH,et al.Finite element analysis of the mechanical behaviour of the different cemented hip femoral prostheses.K Eng Mater.2013;577-578:349-352.
    [19]Affatato S,Zavalloni M,Spinelli M,et al.Long-term in-vitro wear performance of an innovative thermo-compressed cross-linked polyethylene.Tribol Int.2010;43(102):22-28.
    [20]Ashkanfar A,Langton DJ,Joyce TJ.Does a micro-grooved trunnion stem surface finish improve fixation and reduce fretting wear at the taper junction of total hip replacements?Afinite element evaluation.J Biomech.2017;63:47-54.
    [21]Arirajan KA,Chockalingam K,Vignesh C.Selection of contact bearing couple materials for hip prosthesis using finite element analysis under static conditions//American Institute of Physics Conference Series.American Institute of Physics Conference Series,2018.
    [22]Tan R,Fan H,Wu F,et al.Three-dimensional finite element analysis of bone stress distribution around the hip joint prosthesis with stepped stem.J Biomed Eng.2011;28(4):732.
    [23]Polyakov A.Improving the finite element simulation of wear of total hip prosthesis’spherical joint with the polymeric component.Procedia Engin.2015;100:539-548.
    [24]Fouad H.In vitro evaluation of stiffness graded artificial hip joint femur head in terms of joint stresses distributions and dimensions:finite element study.J Mater Sci Mater Med.2011;22(6):1589-1598.
    [25]Darwish SM,Al-Samhan AM.Optimization of artificial hip joint parameters.Materialwissenschaft Werkstofftechnik.2009;40(3):218-223.
    [26]Sariali E,Stewart T,Jin Z,et al.Three-dimensional modeling of in vitro hip kinematics under micro-separation regime for ceramic on ceramic total hip prosthesis:An analysis of vibration and noise.J Biomech.2010;43(2):326-333.
    [27]Leng J,Al-Hajjar M,Wilcox R,et al.Dynamic virtual simulation of the occurrence and severity of edge loading in hip replacements associated with variation in the rotational and translational surgical position.Proc Inst Mech Eng H.2017;231(4):299-306.
    [28]Liu F,Feng L,Wang J.A computational parametric study on edge loading in ceramic-on-ceramic total hip joint replacements.J Mech Behav Biomed.2018:S1751616118301292.
    [29]谢龙汉,蔡明京,苏延全,等.SolidWorks 2013三维设计全解视频讲解[M].北京:电子工业出版社,2013:1-167.
    [30]ISO14242-1Implants for surgery-wear of total hip-joint prostheses-Part1:Loading and displacement parameters for wear-testing machines and corresponding environmental conditions for test.ISO 14242-1:2012.
    [31]裴未迟,李耀刚,机技术-ADAMS的冲击力模型[J].河北理工大学学报,2008,30(4):59-63.
    [32]李增刚.ADAMS入门详解与实例[M].北京:国防工业出版社,2014:126-130.
    [33]Boer A,Ellenbroek MHM,Hemmes HK,et al.Contact mechanics in MSC Adams-A technical evaluation of the contact models in multibody dynamics software MSC Adams.Twente,2011.
    [34]Antoine JF,Visa C,Abba G.Approximate analytical model for hertzian elliptical contact problem.Ttibol Int.2006;128(3):660-664.
    [35]Sanders AP,Brannon RM.Assessment of the applicability of the Hertzian contact theory to edge-loaded prosthetic hip bearings.J Biomech.2011;44(16):2802-2808.
    [36]Tichy J.Contact mechanics and lubrication hydrodynamics of chemical-mechanical planarization.Ttribol Int.2001;39(10):63-68.
    [37]Mak MM,Besong AA,Jin ZM,et al.Effect of microseparation on contact mechanics in ceramic-on-ceramic hip joint replacements.Proc Inst Mech Eng H.2002;216(6):403-408.
    [38]Liu F,Fisher J.Effect of an edge at cup rim on contact stress during micro-separation in ceramic-on-ceramic hip joints.Tribol Int.2017:S0301679X17300129.
    [39]O'Dwyer Lancaster-Jones O,Williams S,Jennings LM,et al.An in vitro simulation model to assess the severity of edge loading and wear,due to variations in component positioning in hip joint replacements.J Biomed Mater Res B Appl Biomater.2018;106(5):1897-1906.
    [40]Cooper HJ,Della Valle CJ.Large diameter femoral heads:is bigger always better?Bone Joint J.2014;96-B(11 Supple A):23-26.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700