用户名: 密码: 验证码:
弧形双悬臂梁试样裂纹扩展电测接线点布局研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Wire connection points layout of crack extension electrical measurement of contoured double cantilever beam specimen
  • 作者:倪陈强 ; 薛河 ; 赵凌燕 ; 崔英浩 ; 王帅
  • 英文作者:NI Chen-qiang;XUE He;ZHAO Ling-yan;CUI Ying-hao;WANG Shuai;College of Mechanical and Engineering,Xi'an University of Science and Technology;
  • 关键词:机械工程 ; 裂纹扩展监测 ; 有限元分析 ; 直流电位降法 ; 弧形双悬臂梁试样
  • 英文关键词:mechanical engineering;;crack propagation monitoring;;finite element analysis;;direct current potential drop method;;contoured double cantilever beam specimen
  • 中文刊名:XKXB
  • 英文刊名:Journal of Xi'an University of Science and Technology
  • 机构:西安科技大学机械工程学院;
  • 出版日期:2019-03-31
  • 出版单位:西安科技大学学报
  • 年:2019
  • 期:v.39;No.166
  • 基金:国家自然科学基金(51475362,51775427);; 陕西省重点研发计划(2017GY-034);; 西安科技大学科研培育基金项目(201626)
  • 语种:中文;
  • 页:XKXB201902018
  • 页数:8
  • CN:02
  • ISSN:61-1434/N
  • 分类号:131-138
摘要
直流电位降法是应用于高温高压水环境下裂纹扩展监测试验的主要方法,弧形双悬臂梁试样是一种应力腐蚀裂纹扩展试验的常用试样。为了寻求被测试样的最优接线点布局方案以提高测试精度和稳定性,论文利用有限元软件建立了弧形双悬臂梁试样三维有限元模型,模拟了多组可选的接线点布局方案,求解得到了试样三维电位场分布及其随裂纹变化的规律,并根据计算结果从信号灵敏度、信号幅度和测点位置误差敏感度3方面对试样电流加载点位置和电位差测量点位置的优化选取进行了分析。研究结果表明,不同位置电位差测点下的灵敏度相对大小关系与电流输入位置无关,电位差测点选在试样缺口侧时可获得较高的信号灵敏度;电位差测点与电流加载点的距离是信号幅度大小和测点位置敏感度的主要影响因素,较大的距离会导致信号幅度降低,而较小的距离会导致很高的测点位置误差敏感度。提出的寻优依据和分析方法也可应用于其他类型试样,为进一步研究其他测试精度的影响因素奠定了基础。
        The direct current potential drop method is the main approach used in crack propagation monitoring test under high temperature and high pressure water environment. The contoured double cantilever beam specimen is commonly used for the stress corrosion crack propagation test. To find the optimal wire connection points layout of the tested specimens,thus improve the test accuracy and stability,a 3 D finite element model of contoured double cantilever beam specimen was established using finite element software. Multiple sets of selectable wire connection points layout scheme was simulated,and the 3 D potential field distribution of the specimen and its variation with the crack extension were obtained. Then,according to the calculation results the optimized selection of location of the current loading points and potential difference measurement points were analyzed from three aspects of the signal sensitivity,signal amplitude and measurement points position error sensitivity. The results show that the relative magnitude relationship of the potential difference signal sensitivity at different measurement points positions is independent of the current input position,and when the potential difference measurement point is located on the notch side of the specimen,higher signal sensitivity can be obtained; the distance between the potential difference measurement points and the current loading points is the main influential factor on signal amplitude and measurement points position error sensitivity. A larger distance will cause the signal amplitude to decrease,while a smaller distance will lead to a very high measurement point position error sensitivity. The proposed search basis and analysis method can also be applied to other types of specimens,laying the foundation for further research on the influence of other factors on the test accuracy.
引文
[1] Xue H,Sato Y,Shoji T. Quantitative estimation of the growth of environmentally assisted cracks at flaws in light water reactor components[J]. Journal of Pressure Vessel Technology,2009,131(1):41-49.
    [2] Andresen P L,Morra M M. Stress corrosion cracking of stainless steels and nickel alloys in high-temperature water[J]. Corrosion,2008,64(1):15-29.
    [3]郭瑞,薛河,崔英浩.安全端焊接残余应力对裂纹尖端力学参量的影响[J].西安科技大学学报,2018,38(3):479-483.GUO Rui,XUE He,CUI Ying-hao. Influence of residual stress in safety end on mechanical parameters at crack tip[J]. Journal of Xi’an University of Science and Technology,2018,38(3):479-483.
    [4]薛河,崔英浩,赵凌燕,等.压水堆一回路环境中304不锈钢的蠕变特性分析[J].西安科技大学学报,2018,38(1):156-161.XUE He,CUI Ying-hao,ZHAO Ling-yan,et al. Creep characteristics analysis of 304 stainless steel in pressured water reactor primary circuit[J]. Journal of Xi’an University of Science and Technology,2018,38(1):156-161.
    [5]薛河,庄泽城,曹婷,等.结构材料维氏硬度与屈服应力的关系分析[J].西安科技大学学报,2017,37(2):274-279.XUE He,ZHUANG Ze-cheng,CAO Ting,et al. Relationship analysis between Vickers hardness and yield stress of structure material[J]. Journal of Xi’an University of Science and Technology,2017,37(2):274-279.
    [6]李永强,薛河.核电关键结构材料应力腐蚀裂纹裂尖微观力学特性分析[J].西安科技大学学报,2016,36(3):380-384.LI Yong-qiang,XUE He. Micro-mechanical state at SCC tip in nuclear key structure materials[J]. Journal of Xi’an University of Science and Technology,2016,36(3):380-384.
    [7] Sato Y,Xue H,Takeda Y,et al. Development of a stress corrosion cracking test methodology using tube-shaped specimens[J]. Journal of Testing and Evaluation,2007,35(3):254-258.
    [8]但体纯,吕战鹏,王俭秋,等. 690合金在高温水中的应力腐蚀裂纹扩展行为[J].金属学报,2010,46(10):1267-1274.DAN Ti-chun,LV Zhan-peng,WANG Jian-qiu,et al.Crack growth behavior for stress corrosion cracking of690 alloy in high temperature water[J]. Acta Metallurgica Sinica,2010,46(10):1267-1274.
    [9] Jin W K,Choi M R,Yun J K. Effect of loading rate on the fracture behavior of nuclear Piping materials under cyclic loading conditions[J]. Nuclear Engineering&Technology,2016,48(6):1376-1386.
    [10]胡梦,陈凯,张乐福.基于直流电压降法的三点弯曲试样疲劳裂纹扩展速率测量方法[J].上海交通大学学报,2015,49(12):1778-1784.HU Meng,CHEN Kai,ZHANG Le-fu. Measurement on fatigue crack growth rate of three-point bending specimens based on direct current potential drop method[J].Journal of Shanghai Jiaotong University,2015,49(12):1778-1784.
    [11]杜东海,陈凯,余论,等.直流电压降法测量核电结构材料在空气中的疲劳裂纹扩展速率[J].原子能科学技术,2014,48(8):1386-1391.DU Dong-hai.,CHEN Kai,YU Lun,et al. Measurement of fatigue crack growth rate of reactor structural material in air based on DCPD method[J]. Atomic Energy Science&Technology,2014,48(8):1386-1391.
    [12] ASTM E399-09,Standard test method for linear-elastic plane-strain fracture toughness KIcof metallic materials[S]. West Conshohocken:ASTM International,2009.
    [13] Lu Z,Shoji T,Meng F,et al. Effects of water chemistry and loading conditions on stress corrosion cracking of cold-rolled 316NG stainless steel in high temperature water[J]. Corrosion Science,2011,53(1):247-262.
    [14] Lu Z,Shoji T,Takeda Y,et al. Transient and steady state crack growth kinetics for stress corrosion cracking of a cold worked 316L stainless steel in oxygenated pure water at different temperatures[J]. Corrosion Science,2008,50(2):561-575.
    [15] Xue H,Li Z,Lu Z,et al. The effect of a single tensile overload on stress corrosion cracking growth of stainless steel in a light water reactor environment[J]. Nuclear Engineering&Design,2011,241(3):731-738.
    [16] Kim D S,Ahn S B,Lee K S,et al. The development of crack measurement system using the direct current potential drop method for use in the hot cell[R]. Ibaraki:Japan atomic energy research institute,1999.
    [17]ernI. The use of DCPD method for measurement of growth of cracks in large components at normal and elevated temperatures[J]. Engineering Fracture Mechanics,2004,71(6):837-848.
    [18] Ritchie R O,Bathe K J. On the calibration of the electrical potential technique for monitoring crack growth using finite element methods[J]. International Journal of Fracture,1979,15(1):47-55.
    [19]许君.两种结构钢的环境促进裂纹扩展行为与裂纹监测技术[D].北京:机械科学研究总院,2010.XU Jun. Environmentally-assisted cracking behavior of two structural steels and the monitoring technology[D].Beijing:China Academy of Machinery Science and Technology,2010.
    [20] Johnson H H. Calibrating the electric potential method for studying slow crack growth[J]. Materials Research And Standards,1965,5(9):442-445.
    [21]陈凯,杜东海,陆辉,等.用直流电压降法研究316LN不锈钢的疲劳裂纹扩展行为[J].机械工程材料,2016,40(2):7-10,36.CHEN Kai,DU Dong-hai,LU Hui,et al. Research on fatigue crack growth behavior of 316LN stainless steel by direct current potential drop method[J]. Materials for Mechanical Engineering,2016,40(2):7-10,36.
    [22]李智军,薛河.直流电位降裂纹测深仪的数值标定[J].西安科技大学学报,2012,32(1):116-120.LI Zhi-jun,XUE He. Numerical calibration of crack monitor based on direct current potential drop[J]. Journal of Xi’an University of Science and Technology,2012,32(1):116-120.
    [23] Hicks M A,Pickard A C. A comparison of theoretical and experimental methods of calibrating the electrical potential drop technique for crack length determination[J]. International Journal of Fracture,1982,20(2):91-101.
    [24]王威强,李培宁,琚定一.缺口裂纹起裂和扩展检测的直流电位法[J].实验力学,1992,7(1):51-59.WANG Wei-qiang,LI Pei-ning,JU Ding-yi. Detection of notch crack initiation and propagation by DC potential drop method[J]. Journal of Experimental Mechanics,1992,7(1):51-59.
    [25]路明旭,肖欣然,姜伟之.一种开裂紧凑试样的电位分析[J].北京航空航天大学学报,1985(1):110-117.LU Ming-xu XIAO Xin-ran JIANG Wei-zhi. The electrical potential analysis of cracked compact specimens[J]. Journal of Beijing Insititute of Aeronautics and Astronautics,1985(1):110-117.
    [26] Merah N. Detecting and measuring flaws using electric potential techniques[J]. Journal of Quality in Maintenance Engineering,2003,9(2):160-175.
    [27]吕宝桐,路民旭.金属材料低温疲劳裂纹起始寿命的微机辅助电位法测试[J].实验力学,1991,6(3):272-278.LU Bao-tong,LU Min-xu. An experimental study on low temperature fatigue crack initiation of metals from notches by a microcomputer aided potential drop measurement system[J]. Journal of Experimental Mechanics,1991,6(3):272-278.
    [28]刘延利,路民旭.一种新的微机辅助疲劳裂纹扩展综合测试系统[J].北京航空航天大学学报,2000,26(2):125-128.LIU Yan-li,LU Min-xu. Set of new microcomputer aided system for comprehensively measuring FCG[J]. Journal of Beijing University of Aeronautics and Astronautics,2000,26(2):125-128.
    [29]张文忠,张伟国.核电站结构部件环境敏感断裂的系统监测和寿命预测[J].腐蚀与防护,1998,19(5):199-201.ZHANG Wen-zhong,ZHANG Wei-guo. System monitoring and life prediction of environmentally assisted cracking of nuclear reactor components[J]. Corrosion&Protection,1998,19(5):199-201.
    [30] Sposito G. Advances in potential drop techniques for non-destructive testing[D]. London:Imperial College London,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700