用户名: 密码: 验证码:
螺旋管内R134a沸腾换热特性试验研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Experimental Study on the Boiling Heat Transfer Characteristics of R134a in a Helically Coiled Tube
  • 作者:牛晓娟 ; 袁怀杰 ; 权琛 ; 白博峰 ; 赵亮
  • 英文作者:NIU Xiao-Juan;YUAN Huai-Jie;QUAN Chen;BAI Bo-Feng;ZHAO Liang;State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University;
  • 关键词:螺旋管 ; 沸腾换热 ; R134a
  • 英文关键词:helically coiled tube;;boiling heat transfer;;R134a
  • 中文刊名:GCRB
  • 英文刊名:Journal of Engineering Thermophysics
  • 机构:西安交通大学动力工程多相流国家重点试验室;
  • 出版日期:2019-03-15
  • 出版单位:工程热物理学报
  • 年:2019
  • 期:v.40
  • 基金:国家杰出青年科学基金(No.51425603);; 国家重点研发计划项目(No.2016YFB0600100)
  • 语种:中文;
  • 页:GCRB201903016
  • 页数:7
  • CN:03
  • ISSN:11-2091/O4
  • 分类号:111-117
摘要
对立式螺旋管内R134a沸腾换热特性开展了试验研究。试验参数范围为:热流密度10~60 kW·m~(-2);质量流速195~400 kg·m~(-2)·s~(-1);压力0.8~1.1 MPa;出口干度0.1~0.9。试验数据与现有沸腾换热系数计算关联式进行了对比,基于沸腾换热机理分析,提出了新的立式螺旋管沸腾换热系数实验关联式。分析了壁温及换热系数的周向分布特性,内侧和上侧壁温相对较高,下侧和外侧的换热系数相对较高。将管周局部换热系数与本文所提出的截面平均沸腾换热系数计算公式进行了对比,结果表明,本文所提出的公式与上、下两侧换热系数符合较好,但过高估计了内侧换热系数,低估了外侧换热系数,公式计算值与内、外两侧换热系数的偏差分别为16.6%和-11.9%。
        The characteristics of R134 a boiling heat transfer in a vertically helically coiled tube are studied. The experimental parameters are as follows: the heat flux is 10~60 kW·m~(-2), the mass flux is 195~400 kg·m~(-2)·s~(-1), the pressure is 0.8~1.1 MPa, and the outlet vapor quality is 0.1~0.9. The experimental data are compared with the existing correlations of boiling heat transfer coefficient.Based on the analysis of boiling heat transfer mechanism, a new correlation for boiling heat transfer in coiled tube is proposed. The circumferential distribution characteristics of wall temperature and heat transfer coefficient are analyzed. The wall temperatures at inner and top side are relatively higher, and the heat transfer coefficients at the bottom and the outer side are relatively higher. The local heat transfer coefficients are compared with the new correlation proposed in this paper. The results show that the heat transfer coefficients at top and bottom sides can be predicted by the new correlation. However, the new correlation underestimates the heat transfer coefficient at the outer side and overestimates that at the inner side, the deviations are 16.6% and-11.9% respectively.
引文
[1] Zhao L, Guo L J, Bai B F, et al. Convective Boiling Heat Transfer and Two-phase Flow Characteristics Inside a Small Horizontal Helically Coiled Tubing Once-through Steam Generator[J]. International Journal of Heat and Mass Transfer, 2003, 46(25):4779-4788
    [2] Owhadi A, Bell K J, Crain B Jr. Forced Convection Boiling Inside Helically Coiled Tubes[J]. International Journal of Heat and Mass Transfer, 1968, 11:1179-1793
    [3] Kozeki M, Nariai H, Furukawa T, et al. A Study of Helically-coiled Tube Once-through Steam Generator[J].Bulletin of JSME, 1970, 13:1485-1494
    [4] Nariai H, Kobayashi M, Matsuoka T. Priction Pressure Drop and Heat Transfer Coefficient of Two-phase Flow in Helically Coiled Tube Once-through Steam Generator for Integrated Type Marine Water Reactor[J]. Nuclear Science Technology, 1982, 19(11):936-947
    [5]郭烈锦,陈学俊,张鸣远.卧式螺旋管内汽水两相流沸腾传热特性研究[J].西安交通大学学报,1994, 28(25):120-124GUO Liejin, CHEN Xuejun, ZHANG Mingyuan. Research on the Forced Convective Boiling Heat Transfer Characteristics of Steam-water Two-phase Flow in Horizontal Helically Coiled Tubes[J]. Journal of Xi'an Jiao-tong University, 1994, 28(25):120-124
    [6]白博峰,郭烈锦.卧式螺旋管内流动沸腾传热研究[J].核科学与工程,1997, 17(4):302-308BAI Bofeng, GUO Liejin. Study on Convective Boiling Heat Transfer in Horizontal Helically Coiled Tubes[J].Chinese Journal of Nuclear Science and Engineering, 1997,17(4):302-308
    [7] Chung Y, Bae K, Kim K K, Lee W. Boiling Heat Transfer and Dryout in Helically Coiled Tubes Under Different Pressure Conditions[J]. Annals of Nuclear Energy, 2014,71:298-303
    [8] Hwang K W, Kim D E, Yang K H, et al. Experimental Study of Flow Boiling Heat Transfer and Dryout Characteristics at Low Mass Flux in Helically-Coiled Tubes[J].Nuclear Engineering and Design, 2014, 273:529-541
    [9] Santini L, Cioncolini A, Butel M T, et al. Flow Boiling Heat Transfer in a Helically Coiled Steam Generator for Nuclear Power Applications[J]. Heat Mass Transfer, 2016,92:91-99
    [10] Wongwises S, Polsongkram M. Evaporation Heat Transfer and Pressure Drop of HFC-134a in a Helically Coiled Concentric Tube-in-tube Heat Exchanger[J]. International Journal of Heat and Mass Transfer, 2006, 49(3/4):658-670
    [11] Aria H, Akhavan-Behabadi M A, Shemirani F M. Ex-perimental Investigation on Flow Boiling Heat Transfer and Pressure Drop of HFC-134a Inside a Vertical Helically Coiled Tube[J]. Heat Transfer Engineering, 2012,33(2):79-87
    [12] Cui W, Li L, Xin M, et al. A Heat Transfer Correlation of Flow Boiling in Micro-Finned Helically Coiled Tube[J].International Journal of Heat and Mass Transfer, 2006,49(17):2851-2858
    [13] Chen C, Han J, Jen T, et al. Thermo-Chemical Characteristics of R134a Flow Boiling in Helically Coiled Tubes at Low Mass Flux and Low Pressure[J]. Thermochim Acta,2011. 512(1/2):163-169
    [14] Niu X J, Yuan H J, Quan C, et al. Flow Boiling Heat Transfer of R134a in a Helically Coiled Tube[J]. Heat Transfer Engineering, Accepted
    [15] Bai B F, Guo L J, Chen X J. A Solution to the Twodimensional Inverse Heat Conduction Problem[J]. Heat Transfer-Asian Research, 2000, 29(2):113-119
    [16] Chen J C. A Correlation for Boiling Heat Transfer to Saturated Fluids in Convective Flow[J]. Industrial&Engineering Chemistry Process Design and Development,1966, 5(3):322-329
    [17] Steiner D, Taborek J. Flow Boiling Heat Transfer in Vertical Tubes Correlated by an Asymptotic Model[J]. Heat Transfer Engineering, 1992, 13(2):43-69

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700