用户名: 密码: 验证码:
棉秆炭特性及其对灰漠土土壤有机碳矿化的效应
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Characteristics of cotton stalk-char and its effect on organic carbon mineralization in grey desert soil
  • 作者:唐光木 ; 徐万里 ; 顾美英 ; 姚红宇 ; 蒲胜海 ; 胡克林
  • 英文作者:TANG Guangmu;XU Wanli;GU Meiying;YAO Hongyu;PU Shenghai;HU Kelin;College of Resources and Environmental Sciences, China Agricultural University;Institute of Soil and Fertilizer and Agricultural Sparing Water, Xinjiang Academy of Agricultural Science;Institute of Microbiology, Xinjiang Academy of Agricultural Sciences;
  • 关键词:棉杆炭 ; 灰漠土 ; 有机碳矿化 ; 激发效应
  • 英文关键词:cotton stalk-char;;grey desert soil;;organic carbon mineralization;;priming effect
  • 中文刊名:STXB
  • 英文刊名:Acta Ecologica Sinica
  • 机构:中国农业大学资源与环境学院;新疆农业科学院土壤肥料与农业节水研究所;新疆农业科学院微生物应用研究所;
  • 出版日期:2018-12-21 16:40
  • 出版单位:生态学报
  • 年:2019
  • 期:v.39
  • 基金:公益性行业(农业)科研专项经费专项(201503136);; 国家自然科学基金(41261059,41161055)
  • 语种:中文;
  • 页:STXB201905029
  • 页数:9
  • CN:05
  • ISSN:11-2031/Q
  • 分类号:315-323
摘要
生物炭具有提高土壤肥力和减缓温室气体排放的作用,但其对土壤有机碳矿化的作用效应存在争议。以新疆灰漠土为研究对象,采用300℃和600℃制备的棉花秸秆炭(棉杆炭)为试材,在25℃、75%的土壤饱和含水量条件下,通过100 d的室内培养,研究了不同比例的棉杆炭添加(0、0.1%、0.5%、1.0%、2.0%和100%,以质量计)对土壤有机碳矿化的效应。结果表明:1)高温制备的棉杆炭,孔隙结构排列整齐,表面光滑,孔隙度和比表面积大,芳香化程度增强;2)棉杆炭的有机碳矿化速率与时间呈乘幂关系(P<0.05),300℃棉杆炭相比600℃棉杆炭的累积矿化量和累积矿化率分别提高了318%和87.06%;高温炭化抑制了有机碳矿化;与对照相比,添加300℃棉杆炭增加了土壤有机碳累积矿化量(0.1%处理除外,降低了7.22%),并随棉杆炭添加量而增加,土壤有机碳累积矿化量提高幅度在3.05%—35.28%,而添加600℃棉杆炭降低了土壤有机碳累积矿化量,降低幅度为6.11%—10.79%;3)培养前期(0—20 d)300℃棉杆炭对灰漠土土壤原有有机碳矿化为正激发效应(0.1%处理除外),后期为负激发效应,整个培养期内为负激发效应;600℃棉杆炭培养前期(0—5 d)对土壤原有有机碳激发效应微小,主要表现为负激发效应。由此可见,低温制备的棉杆炭能提高土壤有机碳矿化,而高温制备棉杆炭则抑制了土壤有机碳矿化,棉杆炭添加对土壤原有有机碳矿化具有负激发效应,能够促进土壤有机碳积累。
        Biochar can improve soil fertility and reduce greenhouse gas emission, but its effect on soil organic carbon(SOC) mineralization is controversial. In this study, we used gray desert soil of Xinjiang as a case study and cotton stalk-char(BC) produced using cotton straw at 300℃ and 600℃ was used as a test material. Different proportions of BC were added to dry soil 0(0 BC), 0.1%(0.1%BC), 0.5%(0.5%BC), 1.0%(1.0%BC), 2.0%(2.0%BC), 100.0%(100%BC)(w/w), and then incubated at 25℃ under 75% saturated soil moisture condition for 100 d. The effects of BC on the SOC mineralization were evaluated. The results showed the following. 1) The BC with high temperature carbonization had smoother surface with neatly-arranged porous structure, the porosity and specific surface area increased, and the aromatization degree was enhanced. 2) A significant power function correlation was observed between the SOC mineralization rates over time(P < 0.05). Compared with the biochar produced at 600℃, the accumulated amount of mineralization and cumulative mineralization rate of SOC with biochar produced at 300℃ increased by 318% and 87.06% respectively. High temperature carbonization inhibits SOC mineralization. Except in the 0.1% BC treatment, the cumulative quantity of SOC mineralization with the addition of biochar produced at 300℃ increased by 3.05%—35.28% compared with that of the control treatments, and it increased with the content of BC added. On the contrary, the amount of accumulative SOC mineralization decreased by 6.11%—10.79% with the biochar produced at 600℃. 3) The positive priming effect during the early stage of incubation(0—20 d) on the native organic carbon mineralization of gray desert soil(except the 0.1% BC treatment). Whereas, the biochar produced at 300℃ showed negative priming effects during the late stage of incubation. However, it showed a negative priming effect throughout the incubation period. A similar trend was observed for the treatments with biochar produced at 600℃, and the positive priming effect was negligible during the early stage of incubation(0—5 d). Therefore, the biochar produced from cotton shell at low temperatures can enhance the SOC mineralization, whereas BC with high temperature carbonization inhibits SOC mineralization. The SOC accumulation can be increased with the addition of BC to soil due to negative priming effects.
引文
[1] IPCC. Climate Change 2013: the Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2013.
    [2] 李露, 周自强, 潘晓健, 熊正琴. 不同时期施用生物炭对稻田N2O和CH4排放的影响. 土壤学报, 2015, 52(4): 839- 848.
    [3] 徐敏, 伍钧, 张小洪, 杨刚. 生物炭施用的固碳减排潜力及农田效应. 生态学报, 2018, 38(2): 393- 404.
    [4] Cely P, Tarquis A M, Paz-Ferreiro J, Méndez A, Gascó G. Factors driving the carbon mineralization priming effect in a sandy loam soil amended with different types of biochar. Solid Earth, 2014, 5: 585- 594.
    [5] Jones D L, Rousk J, Edwards-Jones G, DeLuca T H, Murphy D V. Biochar-mediated changes in soil quality and plant growth in a three year ?eld trial. Soil Biology and Biochemistry, 2012, 45: 113- 124.
    [6] Zheng H, Wang Z Y, Deng X, Herbert S, Xing B S. Impacts of adding biochar on nitrogen retention and bioavailability in agricultural soil. Geoderma, 2013, 206: 32- 39.
    [7] Fang Y, Singh B, Singh B P, Krull E. Biochar carbon stability in four contrasting soils. European Journal of Soil Science, 2014, 65(1): 60- 71.
    [8] Singh B P, Cowie A L, Smernik R J. Biochar carbon stability in a clayey soil as a function of feedstock and pyrolysis temperature. Environment Science & Technology, 2012, 46(21): 11770- 11778.
    [9] Lu W W, Ding W X, Zhang J H, Li Y, Luo J F, Bolan N, Xie Z B. Biochar suppressed the decomposition of organic carbon in a cultivated sandy loam soil: a negative priming effect. Soil Biology and Biochemistry, 2014, 76: 12- 21.
    [10] Rittl T F, Novotny E H, Balieiro F C, Hof?and E, Alves B J R, Kuyper T W. Negative priming of native soil organic carbon mineralization by oilseed biochars of contrasting quality. European Journal of Soil Science, 2015, 66(4): 714- 721.
    [11] Woolf D, Amonette J E, Street-Perrott F A, Lehmann J, Joseph S. Sustainable biochar to mitigate global climate change. Nature Communications, 2010, 1: 1.
    [12] Pereira R C, Kaal J, Arbestain M C, Lorenzo R P, Aitkenhead W, Hedley M, Macías F, Hindmarsh J, Maciá-Agulló J A. Contribution to characterisation of biochar to estimate the labile fraction of carbon. Organic Geochemistry, 2011, 42(11): 1331- 1342.
    [13] Kuzyakov Y, Bogomolova I, Glaser B. Biochar stability in soil: decomposition during eight years and transformation as assessed by compound-specific 14C analysis. Soil Biology and Biochemistry, 2014, 70: 229- 236.
    [14] Whitman T, Zhu Z H, Lehmann J. Carbon mineralizability determines interactive effects on mineralization of pyrogenic organic matter and soil organic carbon. Environmental Science & Technology, 2014, 48(23): 13727- 13734.
    [15] Joseph S D, Camps-Arbestain M, Lin Y, Munroe P, Chia C H, Hook J, van Zwieten L, Kimber S, Cowie A, Singh B P, Lehmann J, Foidl N, Smernik R J, Amonette J E. An investigation into the reactions of biochar in soil. Australian Journal of Soil Research, 2010, 48(7): 501- 515.
    [16] Luo X X, Wang LY, Liu G C, Wang X, Wang Z Y, Zheng H. Effects of biochar on carbon mineralization of coastal wetland soils in the Yellow River Delta, China. Ecological Engineering, 2016, 94: 329- 336.
    [17] Luo Y, Durenkamp M, De Nobili M, Lin Q, Brookes P C. Short term soil priming effects and the mineralisation of biochar following its incorporation to soils of different pH. Soil Biology and Biochemistry, 2011, 43(11): 2304- 2314.
    [18] Keith A, Singh B, Singh B P. Interactive priming of biochar and labile organic matter mineralization in a smectite-rich soil. Environmental Science & Technology, 2011, 45(22): 9611- 9618.
    [19] Zimmerman A R, Gao B, Ahn M Y. Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils. Soil Biology and Biochemistry, 2011, 43(6): 1169- 1179.
    [20] Wardle D A, Nilsson M C, Zackrisson O. Fire-derived charcoal causes loss of forest humus. Science, 2008, 320(5876): 629- 629.
    [21] 谢国雄, 章明奎. 施用生物质炭对红壤有机碳矿化及其组分的影响. 土壤通报, 2014, 45(2): 413- 419.
    [22] Novak J M, Busscher W J, Watts D W, Laird D A, Ahmedna M A, Niandou M A S. Short-term CO2 mineralization after additions of biochar and switchgrass to a Typic Kandiudult. Geoderma, 2010, 154(3/4): 281- 288.
    [23] Spokas K A, Koskinen W C, Baker J M, Reicosky D C. Impacts of woodchip biochar additions on greenhouse gas production and sorption/degradation of two herbicides in a Minnesota soil. Chemosphere, 2009, 77(4): 574- 581.
    [24] Kuzyakov Y, Subbotina I, Chen H Q, Bogomolova I, Xu X L. Black carbon decomposition and incorporation into soil microbial biomass estimated by 14C labeling. Soil Biology and Biochemistry, 2009, 41(2): 210- 219.
    [25] Singh B P, Cowie A L. Long-term influence of biochar on native organic carbon mineralisation in a low-carbon clayey soil. Scientific Reports, 2014, 4: 3687- 3687.
    [26] Spokas K A, Reicosky D C. Impacts of sixteen different biochars on soil greenhouse gas production. Annals of Environmental Science, 2009, 3(612): 179- 193.
    [27] 姚红宇, 唐光木, 葛春辉, 贾红涛, 徐万里. 炭化温度和时间与棉杆炭特性及元素组成的相关关系. 农业工程学报, 2013, 29(7): 199- 206.
    [28] 孙克静, 张海荣, 唐景春. 不同生物质原料水热生物炭特性的研究. 农业环境科学学报, 2014, 33(11): 2260- 2265.
    [29] Liu X Y, Zheng J F, Zhang D X, Cheng K, Zhou H M, Zhang A F, Li L Q, Joseph S, Smith P, Crowley D, Kuzyakov Y, Pan G X. Biochar has no effect on soil respiration across Chinese agricultural soils. Science of the Total Environment, 2016, 554- 555: 259- 265.
    [30] 谢祖彬, 刘琦, 许燕萍, 朱春悟. 生物炭研究进展及其研究方向. 土壤, 2011, 43(6): 857- 861.
    [31] Sigua G C, Novak J M, Watts D W, Sz?gi A A, Shumaker P D. Impact of switchgrass biochars with supplemental nitrogen on carbon-nitrogen mineralization in highly weathered Coastal Plain Ultisols. Chemosphere, 2016, 145: 135- 141.
    [32] Farrell M, Kuhn T K, Macdonald L M, Maddern T M, Murphy D V, Hall P A, Singh B P, Baumann K, Krull E S, Baldock J A. Microbial utilisation of biochar-derived carbon. Science of the Total Environment, 2013, 465: 288- 297.
    [33] Fang Y Y, Singh B, Singh B P. Effect of temperature on biochar priming effects and its stability in soils. Soil Biology and Biochemistry, 2015, 80: 136- 145.
    [34] Kuzyakov Y, Friedel J K, Stahr K. Review of mechanisms and quanti?cation of priming effects. Soil Biology and Biochemistry, 2000, 32(11/12): 1485- 1498.
    [35] Mitchell P J, Simpson A J, Soong R, Simpson M J. Shifts in microbial community and water-extractable organic matter composition with biochar amendment in a temperate forest soil. Soil Biology and Biochemistry, 2015, 81: 244- 254.
    [36] 刘岩, 尹云锋, 陈智伟, 尹艳, 马红亮, 高人. 不同生物质炭对土壤有机碳矿化及其活性碳的影响. 亚热带资源与环境学报, 2016, 11(4): 9- 14, 36- 36.
    [37] 赵次娴, 陈香碧, 黎蕾, 肖和友, 刘坤平, 何寻阳, 苏以荣. 添加蔗渣生物质炭对农田土壤有机碳矿化的影响. 中国农业科学, 2013, 46(5): 987- 994.
    [38] Dempster D N, Gleeson D B, Solaiman Z M, Jones D L, Murphy D V. Decreased soil microbial biomass and nitrogen mineralisation with Eucalyptus biochar addition to a coarse textured soil. Plant and Soil, 2012, 354(1/2): 311- 324.
    [39] Lehmann J, Rillig M C, Thies J, Masiello C A, Hockaday W C, Crowley D. Biochar effects on soil biota-A review. Soil Biology and Biochemistry, 2011, 43(9): 1812- 1836.
    [40] Deenik J L, McClellan T, Uehara G, Antal M J, Campbell S. Charcoal volatile matter content in?uences plant growth and soil nitrogen transformations. Soil Science Society of America Journal, 2010, 74(4): 1259- 1270.
    [41] 刘燕萍, 高人, 杨玉盛, 尹云锋, 马红亮, 薛丽佳. 黑碳添加对土壤有机碳矿化的影响. 土壤, 2011, 43(5): 763- 768.
    [42] Liu Y X, Yang M, Wu Y M, Wang H L, Chen Y X, Wu W X. Reducing CH4 and CO2 emissions from waterlogged paddy soil with biochar. Journal of Soils and Sediments, 2011, 11(6): 930- 939.
    [43] Hua L, Lu Z Q, Ma H R, Jin S S. Effect of biochar on carbon dioxide release, organic carbon accumulation, and aggregation of soil. Environmental Progress & Sustainable Energy, 2014, 33(3): 941- 946.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700