用户名: 密码: 验证码:
金属亚波长结构的表面增强拉曼散射
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Surface-enhanced Raman scattering of subwavelength metallic structures
  • 作者:秦康 ; 袁列荣 ; 谭骏 ; 彭胜 ; 王前进 ; 张学进 ; 陆延青 ; 朱永元
  • 英文作者:Qin Kang;Yuan Lie-Rong;Tan Jun;Peng Sheng;Wang Qian-Jin;Zhang Xue-Jin;Lu Yan-Qing;Zhu Yong-Yuan;Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University;
  • 关键词:表面增强拉曼散射 ; 表面等离子极化激元 ; 亚波长结构 ; 近场光学
  • 英文关键词:surface-enhanced Raman scattering;;surface plasmon polaritons;;subwavelength structures;;near-field optics
  • 中文刊名:WLXB
  • 英文刊名:Acta Physica Sinica
  • 机构:南京大学现代工程与应用科学学院固体微结构物理国家重点实验室人工微结构科学与技术协同创新中心;
  • 出版日期:2019-07-23
  • 出版单位:物理学报
  • 年:2019
  • 期:v.68
  • 基金:国家重点研发计划(批准号:2017YFA0303700);; 国家自然科学基金(批准号:11374150,11274159)资助的课题~~
  • 语种:中文;
  • 页:WLXB201914013
  • 页数:8
  • CN:14
  • ISSN:11-1958/O4
  • 分类号:173-180
摘要
灵敏度高、可重复性好的固态表面增强拉曼散射基板可作为生物医学、环境科学、化学化工、纳米科技等领域的生化感测器,具有十分重要的实际应用价值.传统的表面增强拉曼散射基于金属颗粒提供的局域表面等离谐振这一物理机制,但其组装不易且模式损耗大.本文基于周期性金属亚波长结构,构建增强拉曼散射信号的"热点",同时保证测量信号的可重复性.从表面光子能带结构出发,提出了区别于局域表面等离谐振的其他三种增强机制:表面等离子极化激元带边增强机制、间隙等离子极化激元增强机制以及二者相耦合增强机制.采用一定的工艺,提高金属表面平整度,抑制表面等离子极化激元的传播损耗,从而提高表面增强拉曼散射的增强因子.理论结合实验,且二者一致性好.研究结果有望将表面增强拉曼散射光谱技术进一步向实用化方向推进.
        Surface-enhanced Raman scattering(SERS) makes the Raman signals, as fingerprints of different vibration modes of chemical bonds, significant in practical applications. Two main mechanisms, chemical and physical,are attributed to the SERS of molecules adsorbed on metals. The physical mechanism plays a major role in SERS, which is the focus of our paper. Recent SERS systems are mostly based on dimer structures, i.e.nanoparticle pairs, of noble metals. Large amplification of electrical field occurs in the gap of a dimer structure compared with a single nanoparticle. The above gap positions are called as "hot spots" of SERS. In addition,the reproducibility and reliability of SERS substrates are also important for practical applications. Here we use periodical subwavelength metallic structures to meet such needs, and develop other kinds of electrical field enhancement mechanisms. We present the electrical field enhancement of the band-edge mode of surface plasmon polariton, gap plasmon polariton mode, as well as their coupling mode. We choose one-dimensional subwavelength metallic structures to clarify the physical mechanism. Our purpose is to develop subwavelength metallic structures with even and intensive "hot spots", serving as ultrasensitive solid-state SERS substrates with excellent reproducibility and reliability.
引文
[1]Fleischmann M,Hendra P J,McQuillan A J 1974 Che-m.Phys.Lett.26 163
    [2]Ringler M,Klar T A,Schwemer A,Susha A S,Stehr J,Raschke G,Funk S,Borowski M,Nichtl A,Kuerzinger K,Phillips R T,Feldmann J 2007 Nano Lett.7 2753
    [3]Huang J S,Callegari V,Geisler P,Bruning C,Kern J,Prangsma J C,Wu X,Feichtner T,Ziegler J,Weinmann P,Kamp M,Forchel A,Biagioni P,Sennhauser U,Hecht B 2010Nat.Commun.1 150
    [4]Benz F,Tserkezis C,Herrmann L O,de Nijs B,Sanders A,Sigle D O,Pukenas L,Evans S D,Aizpurua J,Baumberg J J2015 Nano Lett. 15 669
    [5]Nie S M,Emory S R 1997 Science 275 1102
    [6]Kleinman S L,Ringe E,Valley N,Wustholz K L,Phillips E,Scheidt K A,Schatz G C,van Duyne R P 2011 J.Am.Chem.Soc.133 4115
    [7]Kneipp J,Kneipp H,Kneipp K 2008 Chem.Soc.Rev.37 1052
    [8]Qian X M,Nie S M 2008 Chem.Soc.Rev.37 912
    [9]Duan H G,Hu H L,Kumar K,Shen Z X,Yang J K W 2011ACS Nano 5 7593
    [10]Feng L,Ma R,Wang Y,Xu D,Xiao D,Liu L,Lu N 2015Nano Res.8 3715
    [11]Im H,Bantz K C,Lindquist N C,Haynes C L,Oh S H 2010Nano Lett.10 2231
    [12]Li J F,Huang Y F,Ding Y,Yang Z L,Li S B,Zhou X S,Fan F R,Zhang W,Zhou Z Y,Wu D Y,Ren B,Wang Z L,Tian Z Q 2010 Nature 464 392
    [13]Wang H H,Liu C Y,Wu S B,Liu N W,Peng C Y,Chan T H,Hsu C F,Wang J K,Wang Y L 2006 Adv.Mater.18 491
    [14]Engheta N,Ziolkowski R W 2006 Metamaterials:Physics and Engineering Explorations(Hoboken:Wiley)
    [15]Yu N F,Genevet P,Kats M A,Aieta F,Tetienne J P,Capasso F,Gaburro Z 2011 Science 334 333
    [16]Le Ru E C,Etchegoin P G 2006 Chem.Phys.Lett. 423 63
    [17]Sakoda K 1999 Opt.Expre.ss 4 167
    [18]Ding F,Yang Y Q,Deshpande R A,Bozhevolnyi S I 2018Nanophotonics 7 1129
    [19]Le Ru E C,Blackie E,Meyer M,Etchegoin P G 2007 J.Phys.Chem.C 111 13794

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700