用户名: 密码: 验证码:
固体氧化物燃料电池(SOFC)合金连接体耐高温氧化导电防护涂层
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Conductive Protective Coating with Heat Oxygen-resistance for Solid Oxide Fuel Cell(SOFC) Alloy Interconnect
  • 作者:辛显双 ; 朱庆山 ; 刘岩
  • 英文作者:XIN Xian-shuang;ZHU Qing-shan;LIU Yan;Key Laboratory of Materials for Energy Conversion,Shanghai Institute of Ceramics, Chinese Academy of Sciences(CAS);State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences;State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences(CAS);
  • 关键词:固体氧化物燃料电池(SOFC) ; 合金连接体 ; 涂层 ; 粉末还原法 ; 纳米微结构
  • 英文关键词:solid oxide fuel cell(SOFC);;alloy interconnect;;coating progress;;powders reduction technique;;nanostructure
  • 中文刊名:BMJS
  • 英文刊名:Surface Technology
  • 机构:中国科学院上海硅酸盐研究所能量转换材料院重点实验室;中国科学院过程工程研究所多相复杂系统国家重点实验室;中国科学院上海硅酸盐研究所高性能陶瓷和超微结构国家重点实验室;
  • 出版日期:2019-01-20
  • 出版单位:表面技术
  • 年:2019
  • 期:v.48
  • 基金:国家自然科学基金项目(51671210,51671209);; 上海市自然科学基金项目(14ZR1446000)~~
  • 语种:中文;
  • 页:BMJS201901004
  • 页数:8
  • CN:01
  • ISSN:50-1083/TG
  • 分类号:35-42
摘要
降低固体氧化物燃料电池(SOFC)工作温度,可使用高电导、高热导、高强度的合金作为连接体。其中含Cr的铁素体不锈钢合金,具有与SOFC其他部件材料匹配的热膨胀系数,此外还有易于加工及成本低廉等优点,成为中低温板式SOFC连接体材料应用与研究的重点。但这类合金表面高温氧化所带来的界面电阻变化,及Cr挥发进而在阴极沉积所带来的诸多问题,成为影响板式SOFC长期稳定的关键因素,因此必须进行有效的表面处理。从SOFC合金连接体引起的电堆性能衰减机理出发,阐明了降低或防止阴极Cr中毒的几类方法,论述了合金连接体涂层的必要性。结合笔者开发设计的尖晶石粉末还原法在合金连接体表面制备纳米微结构Mn_(0.9)Y_(0.1)Co_2O_4(MYC)防护涂层方面的工作,综述了国内外SOFC合金连接体涂层材料及涂层制备方法的研究进展。对各类涂层材料及涂层制备方法优缺点进行比较的同时,重点介绍了电导率高、实用性较强的钙钛矿结构及尖晶石结构涂层材料。最后展望了合金连接体涂层的发展前景。
        The alloy with high conductivity, thermal conductance and strength can be used as the interconnect to reduce the temperature of solid oxide fuel cell(SOFC). The chromium-containing ferritic stainless steels are selected as the leading candidate alloys in the application and study of interconnects for intermediate and low temperature SOFC due to thermal coefficient of expansion matching with the component material of SOFC, easy processing, low cost, etc.. However, issues caused from both interface resistance change induced from surface high-temperature oxidation, and the Cr volatilization and deposition to the cathode, have become the major reasons to influence the long-term stability of SOFC. Therefore, effective surface treatment must be carried out. Based on the degradation mechanism induced from alloy interconnect of SOFC stack, the work illustrates several methods to reduce or prevent cathode Cr poisoning and summarizes that it is necessary to prepare a protective coating on the surface of interconnect alloy. In combination with the previous study by the authors about the Mn_(0.9)Y_(0.1)Co_2O_4(MYC) protective coating of nanostructure on alloy interconnect prepared by the spinel powders reduction technique, the domestic and overseas development of coating materials and fabrication methods for SOFC alloy interconnect are elaborately reviewed. For comparison of the advantages and disadvantages of all kinds of coating materials and coating preparation methods, the perovskite structure and spinel structure materials are highlighted due to high electrical conductivity and practical application ability. Finally, the outlook of alloy interconnect coating is outlined.
引文
[1]KORDESH K V,SIMADER G R.Environmental impact of fuel cell technology[J].Chemical society reviews,1995,95:191-207.
    [2]SHAO Z P,HAILE S M.A high-performance cathode for the next generation of solid-oxide fuel cells[J].Nature,2004,431:170-173.
    [3]衣宝廉.燃料电池-原理·技术·应用[M].北京:化学工业出版社,2003.YI Bao-lian.Fuel cell-principle,technology,application[M].Beijing:Chemical Industry Press,2003.
    [4]陈磊,齐意,木士春.通过Au修饰提高质子交换膜燃料电池Pt Co合金催化剂稳定性[J].表面技术,2015,44(1):29-33.CHEN Lei,QI Yi,MU Shi-chun.Improved stability of PtCo alloy catalysts for proton exchange membrane fuel cells by gold decoration[J].Surface technology,2015,44(1):29-33.
    [5]王绍荣,叶晓峰.固体氧化物燃料电池技术[M].武汉:武汉大学出版社,2015.WANG Shao-rong,YE Xiao-feng.Solid oxide fuel cell technology[M].Wuhan:Wuhan University Press,2015.
    [6]宋世栋,韩敏芳,孙再洪.固体氧化物燃料电池平板式电池堆的研究进展[J].科学通报,2014,59(15):1405-1416.SONG Shi-dong,HAN Min-fang,SUN Zai-hong.The recent progress of planar solid oxide fuel cell stack[J].Chinese science bulletin,2014,59(15):1405-1416.
    [7]辛显双,朱庆山.固体氧化物燃料电池(SOFC)电池稳定性分析[J].化学进展,2009,21(1):227-234.XIN Xian-shuang,ZHU Qing-shan.Analyses of solid oxide fuel cells(SOFCs)stability[J].Progress in chemistry,2009,21(1):227-234.
    [8]XIN X S,LYU Z,HUANG X Q,et al.Anode-supported solid oxide fuel cell based on dense electrolyte membranes fabricated by filter-coating[J].Journal of power sources,2006,159:1158-1161.
    [9]XIN X S,LYU Z,ZHU Q S,et al.Fabrication of dense YSZ electrolyte membranes by a modified dry-pressing using nanocrystalline powders[J].Journal of materials chemistry,2007,17:1627-1630.
    [10]NGUYEN Q M.Ceramic fuel cells[J].Journal of the European ceramic society,1993,76:563-588.
    [11]TIMURKUTLUK B,CIGDEM T,MAT M D,et al.Areview on cell/stack designs for high performance solid oxide fuel cells[J].Renewable and sustainable energy reviews,2016,56:1101-1121.
    [12]SINGHAL S C.Advance in solid oxide fuel cells technology[J].Solid state ionics,2000,135:305-313.
    [13]BADWAL S P S,FOGER K.Solid oxide electrolyte fuel cell review[J].Ceramics international,1996,22:257-265.
    [14]ZHU W Z,DEEVI S C.Development of interconnect materials for solid oxide fuel cells[J].Materials science&engineering,2003,A348:227-243.
    [15]SHAIGAN N,QU W,IVEY D G,et al.A review of recent progress in coatings,surface modifications and alloy developments for solid oxide fuel cell ferritic stainless steel interconnects[J].Journal of power sources,2010,195:1529-1542.
    [16]FALK-WINDISCH H,SATTARI M,SVENSSON J E,et al.Chromium vaporization from mechanically deformed pre-coated interconnects in solid oxide fuel cells[J].Journal of power sources,2015,297:217-223.
    [17]SHAIGAN N Q W,LVEY D G,CHEN C.A review of recent progress in coatings,surface modifications and alloy developments for solid oxide fuel cell ferritic stainless steel interconnects[J].Journal of power sources,2010,195:1529-1542.
    [18]FONTANA S,AMENDOLA R,CHEVALIER S,et al.Metallic interconnects for SOFC:Characterization of corrosion resistance and conductivity evaluation at operating temperature of differently coated alloys[J].Journal of power sources,2007,171:652-662.
    [19]PARK M,SHIN J S,LEE S,et al.Thermal degradation mechanism of ferritic alloy(Crofer 22 APU)[J].Corrosion science,2018,134:17-22.
    [20]ALNEGREN P,SATTARI M,SVENSSON J E,et al.Temperature dependence of corrosion of ferritic stainless steel in dual atmosphere at 600~800℃[J].Journal of power sources,2018,392:129-138.
    [21]HILPERT K,DAS D,MILLER M,et al.Chromium vapor species over solid oxide fuel cell interconnect materials and their potential for degradation processes[J].Journal of the electrochemical society,1996,143:3642-3647.
    [22]MOSBAEK R R,HJELM J,BARFOD R,et al.Electrochemical characterization and degradation analysis of large SOFC stacks by impedance spectroscopy[J].Fuel cells,2013,13(4):605-611.
    [23]ROEHRENS D,NEUMANN A,BEEZ A,et al.Formation of chromium containing impurities in(La,Sr)MnO3solid-oxide-fuel-cell cathodes under stack operating conditions and its effect on performance[J].Ceramics international,2016,42:9467-9474.
    [24]六价铬[EB/OL].http://baike.haosou.com/doc/30235-31519.html,2007-03-16/2018-08-24.Hexavalent chromium[EB/OL].http://baike.haosou.com/doc/30235-31519.html,2007-03-16/2018-08-24.
    [25]?ZTüRK B,TOPCU A,?ZTüRK S,et al.Oxidation,electrical and mechanical properties of solid oxide fuel cell metallic interconnects manufactured through powder metallurgy[J].International journal of hydrogen energy,2018,43:10822-10833.
    [26]GAI L L,LIU Y,XIN X S,et al.Promising cermets of TiN-Ni for intermediate temperature solid oxide fuel cell interconnects application[J].Journal of power sources,2017,359:166-172.
    [27]QI Q,LIU Y,WANG L J,et al.The oxidation resistance optimization of titanium carbide/hastelloy(Ni-based alloy)composites applied for intermediate-temperature solid oxide fuel cell interconnects[J].Journal of power sources,2017,359:626-633.
    [28]XIONG C Y,LI W L,XIAO J H,et al.Improved chromium-poisoning on lanthanum strontium manganite cathode in presence of a newly developed iron-chromium based interconnect alloy for solid oxide fuel cells[J].International journal of hydrogen energy,2015,40:13957-13963.
    [29]FUJITA K,HASHIMOTO T,OGASAWARA K,et al.Relationship between electrochemical properties of SOFCcathode and composition of oxide layer formed on metallic interconnects[J].Journal of power sources,2004,131(1-2):270-277.
    [30]STANISLOWSKI M,FROIZHEIM J,NIEWOLAK L,et al.Reduction of chromium vaporization from SOFC interconnectors by highly effective coatings[J].Journal of power sources,2007,164(2):578-589.
    [31]TU H Y,STIMMING U.Advances,aging mechanisms and lifetime in solid-oxide fuel cells[J].Journal of power sources,2004,127(1-2):284-293.
    [32]LAU G Y,TUCKER M C,JACOBSON C P,et al.Chromium transport by solid state diffusion on solid oxide fuel cell cathode[J].Journal of power sources,2010,195:7540-7547.
    [33]PAULSON S C,BIRSS V I.Chromium poisoning of LSM-YSZ SOFC cathodes I detailed study of the distribution of chromium species at a porous,single-phase cathode[J].Journal of the electrochemical society,2004,151(11):A1961-A1968.
    [34]JIANG S P,ZHEN Y D,ZHANG S.Interaction between Fe-Cr metallic interconnect and(La,Sr)MnO3/YSZ composite cathode of solid oxide fuel cells[J].Journal of the electrochemical society,2006,153(8):A1511-A1517.
    [35]YOKOKAWA H,HORITA T,SAKAI N,et al.Thermodynamic considerations on Cr poisoning in SOFC cathodes[J].Solid state ionics,2006,177(35-36):3193-3198.
    [36]HILPERT K,DAS D,MILLER M,et al.Chromium vapor species over solid oxide fuel cell interconnect materials and their potential for degradation processes[J].Journal of the electrochemical society,1996,143(11):3642-3647.
    [37]JIANG S P,ZHEN Y D.Mechanism of Cr deposition and its application in the development of Cr-tolerant cathodes of solid oxide fuel cells[J].Solid state ionics,2008,179(27-32):1459-1464.
    [38]FERGUS J W.Effect of cathode and electrolyte transport properties on chromium poisoning in solid oxide fuel cells[J].International journal of hydrogen energy,2007,32(16):3664-3671.
    [39]GANNON P,DEIBERT M,WHITE P,et al.Advanced PVD protective coatings for SOFC interconnects[J].International journal of hydrogen energy,2008,33(14):3991-4000.
    [40]LIU X B,JOHNSON C,LI C M,et al.Developing TiAlNcoatings for intermediate temperature solid oxide fuel cell interconnect applications[J].International journal of hydrogen energy,2008,33(1):189-196.
    [41]BALLAND A,GANNON P,DEIBERT M,et al.Investigation of La2O3 and/or(Co,Mn)3O4 deposits on Crofer 22APU for the SOFC interconnect application[J].Surface&coatings technology,2009,203(20-21):3291-3296.
    [42]STANISLOWSKI M,FROITZHEIM J,NIEWOLAK L,et al.Reduction of chromium vaporization from SOFCinterconnectors by highly effective coatings[J].Journal of power sources,2007,164(1):578-589.
    [43]LEE S,CHU C L,TSAI M J,et al.High temperature oxidation behavior of interconnect coated with LSCF and LSM for solid oxide fuel cell by screen printing[J].Applied surface science,2010,256(6):1817-1824.
    [44]YANG Z G,XIA G G,STEVENSON J W.Evaluation of perovskite overlay coatings on ferritic stainless steels for SOFC interconnect applications[J].Journal of the electrochemical society,2006,153(10):A1852-A1858.
    [45]SCHILLER G,HENNE R,RUCKDASCHEL R.Vacuum plasma sprayed protective layers for solid oxide fuel cell application[J].Jounal of advanced materials,2000,32(1):3-8.
    [46]MONTERO X,TIETZ F,SEBOLD D,et al.MnCol.9Fe0.1O4spinel protection layer on commercial ferritic steels for interconnect applications in solid oxide fuel cells[J].Journal of power sources,2008,184:172-179.
    [47]ZHANG W Y,HUA B,DUAN N Q,et al.Cu-Fe spinel coating as oxidation barrier for Fe-16Cr metallic interconnect in solid oxide fuel cells[J].Journal of the electrochemical society,2012,159:c388-c392.
    [48]STEVENSON J W,YANG Z G,XIA G G,et al.Long-term oxidation behavior of spinel-coated ferritic stainless steel for solid oxide fuel cell interconnect applications[J].Journal of power sources,2013,231:256-263.
    [49]HOSSEINI N,ABBASI M H,KARIMZADCH F,et al.Development of Cu1.3Mn1.7O4 spinel coating on ferritic stainless steel for solid oxide fuel cell interconnects[J].Journal of power sources,2015,273:1073-1083.
    [50]HU Y Z,YUN L L,WEI T,et al.Aerosol sprayed Mn1.5Co1.5O4 protective coatings for metallic interconnect of solid oxide fuel cells[J].International journal of hydrogen energy,2016,41:20305-20313.
    [51]GAMBINO L V,MAGDEFRAU N J,AINDOW M.Microstructural evolution in manganese cobaltite films grown on Crofer 22 APU substrates by pulsed laser deposition[J].Surface&coatings technology,2016,286:206-214.
    [52]HAN S J,PALA Z,SAMPATH S.Plasma sprayed manganese-cobalt spinel coatings:Process sensitivity on phase,electrical and protective performance[J].Journal of power sources,2016,304:234-243.
    [53]LüY,GENG S J,SHI Z N.Evaluation of electroplated copper coating on ferritic stainless steel for solid oxide fuel cells interconnects[J].Journal of alloys and compounds,2017,726:269-275.
    [54]WANG R F,SUN Z H,PALA U B,et al.Mitigation of chromium poisoning of cathodes in solid oxide fuel cells employing Cu Mn1.8O4 spinel coating on metallic interconnect[J].Journal of power sources,2018,376:100-110.
    [55]TALIC B,MOLIN S,WIIK K,et al.Comparison of iron and copper doped manganese cobalt spinel oxides as protective coatings for solid oxide fuel cell interconnects[J].Journal of power sources,2017,372:145-156.
    [56]MOLIN S,SABATO A G,BINDI M,et al.Microstructural and electrical characterization of Mn-Co spinel protective coatings for solid oxide cell interconnects[J].Journal of the European ceramic society,2017,37:4781-4791.
    [57]BOBRUK M,MOLIN S,CHEN M,et al.Sintering of Mn Co2O4 coatings prepared by electrophoretic deposition[J].Materials letters,2018,213:394-398.
    [58]XIN X S,WANG S R,ZHU Q S,et al.A high performance nano-structure conductive coating on a Crofer 22APU alloy fabricated by a novel spinel powder reduction coating technique[J].Electrochemistry communications,2010,12:40-43.
    [59]XIN X S,WANG S R,QIAN J Q,et al.Development of the spinel powder reduction technique for solid oxide fuel cell interconnect coating[J].International journal of hydrogen energy,2012,37:471-476.
    [60]CHEN G Y,XIN X S,LUO T,et al.Mn1.4Co1.4Cu0.2O4spinel protective coating on ferritic stainless steels for solid oxide fuel cell interconnect applications[J].Journal of power sources,2015,278:230-234.
    [61]陶玲,朱庆山,辛显双,等.固体氧化物燃料电池金属连接极涂层材料YCo0.6Mn0.4O3的研究[J].过程工程学报,2007,7(5):1040-1044.TAO Ling,ZHU Qing-shan,XIN Xian-shuang,et al.Performance of YCo0.6Mn0.4O3 coating material for metallic interconnects of intermediate temperature solid oxide fuel cells[J].The Chinese journal of process engineering,2007,7(5):1040-1044.
    [62]辛显双,王绍荣,徐延杰,等.掺杂Mn-Co尖晶石复合纳米材料及其低温烧结方法:中国,ZL 200910196608.5[P].2009-09-27.XIN Xian-shuang,WANG Shao-rong,XU Yan-jie,et al.Doping Mn-Co spinel composite nanomaterials and their low temperature sintering method:China,200910196608.5[P].2009-09-27.
    [63]辛显双,王绍荣,温廷琏,等.尖晶石粉末还原法制备合金耐高温氧化纳米结构导电涂层:中国,ZL200910196607.0[P].2009-09-27.XIN Xian-shuang,WANG Shao-rong,WEN Ting-lian,et al.Nanostructrue conductive coating with high temperature oxygen-resistant for alloy by spinel powders reduction method:China,ZL 200910196607.0[P].2009-09-27.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700