用户名: 密码: 验证码:
特厚板厚度方向形变传递规律的仿真分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Simulation analysis on transfer law of deformation in thickness direction of ultra-heavy plate
  • 作者:高志玉 ; 樊献金 ; 窦春岳 ; 张旭 ; 潘涛
  • 英文作者:GAO Zhi-yu;FAN Xian-jin;DOU Chun-yue;ZHANG Xu;PAN Tao;College of Materials Science and Engineering,Liaoning Technical University;Department of Engineering Steels,Central Iron and Steel Research Institute;
  • 关键词:特厚板 ; 截面效应 ; 本构模型 ; 有限元 ; 等效应变
  • 英文关键词:ultra-heavy plate;;section effect;;constitutive model;;FEM;;equivalent strain
  • 中文刊名:GANT
  • 英文刊名:Iron & Steel
  • 机构:辽宁工程技术大学材料科学与工程学院;钢铁研究总院工程用钢研究所;
  • 出版日期:2019-04-15
  • 出版单位:钢铁
  • 年:2019
  • 期:v.54
  • 基金:辽宁省博士科研启动基金资助项目(20170520151);; 大学生创新创业训练计划资助项目(校级201810147092)
  • 语种:中文;
  • 页:GANT201904010
  • 页数:7
  • CN:04
  • ISSN:11-2118/TF
  • 分类号:55-60+68
摘要
基于Gleeble热压缩试验、有限元方法对一种HSLA钢特厚板轧制过程中厚度方向变形向心部传递的规律进行了仿真研究。首次从有限元角度定量揭示出特厚板生产中高温、低速、大压下量的轧制规范机理。仿真所用材料本构模型由Gleeble试验数据结合Arrhenius方程所构建,研究了轧制速度、压下量、轧制温度以及板坯厚度对特厚板厚度方向应变分布的影响规律。结果表明,轧制速度小于1 m/s时(平均应变速率小于0.33 s-1),有利于变形向钢板心部传递,削弱截面效应;压下量越大,钢板等效应变越大,且厚度方向最大等效应变出现的位置向心部偏移;轧制温度对等效应变的分布影响不显著,但是高温轧制有利于减小轧机负荷;板坯越厚,变形分布不均匀性越显著。当板坯厚度为500 mm时,截面的最大、最小等效应变差达到0.2。生产中,在设备允许的情况下,建议特厚板的轧制采用高温、低速、大压下量规范。
        Based on Gleeble hot compression test and finite element method,the law of the deformation transferring to the center in the thickness direction of a HSLA ultra-heavy plate was simulated. For the first time,the rolling specification mechanism of the high temperature,low speed and large reduction in the production of the heavy plate rolling was revealed quantitatively from the view of the finite element method. The material constitutive model used in the rolling process simulation is established by the Gleeble thermal compression test results combined with the Arrhenius equation.The effect of the process parameters,rolling speed,reduction,temperature and thickness of the slab on the strain distribution in the thickness direction was studied. The results show that when the rolling speed is less than 1 m/s(average strain rate less than 0.33 s-1),it is beneficial to transfer the deformation to the core of the plate and weaken the section effect.The larger the reduction,the greater the equivalent strain,and the location of the maximum equivalent strain in the direction of thickness is offset to the center. The effect of the rolling temperature on the distribution of the equivalent strain is not significant,but the high temperature rolling can reduce the load of the rolling mill. The thicker the slab is,the more significant the inhomogeneity of the deformation distribution is. When the slab thickness is 500 mm,the difference between maximum and minimum equivalent strain of the section reaches 0.2. In the production,it is recommended that the ultra-heavy plate should be rolled at a high temperature and a low speed and a large reduction under the equipment allows.
引文
[1]王小勇,苏航,潘涛,等. ANSYS有限元模拟表面冷速对超厚板截面温度场的影响[J].材料科学与工艺,2013,21(3):49.(WANG Xiao-yong,SU Hang,PAN Tao,et al. Effect of surface cooling rate on section temperature field of ultra-heavy plate steel by ANSYS[J]. Materials Science and Technology,2013,21(3):49.)
    [2]骆宗安,谢广明,胡兆辉,等.特厚钢板复合轧制工艺的实验研究[J].塑性工程学报,2009,16(4):125.(LUO Zong-an,XIE Guang-ming,HU Zhao-hui,et al. Experiment study of rolling technology on heavy gauge compound plates[J]. Journal of Plasticity Engineering,2009,16(4):125.)
    [3]耿明山,刘艳,黄衍林.大型特厚板坯料制造技术现状和发展趋势[J].中国冶金,2014,24(8):1.(GENG Ming-shan,LIU Yan,HUANG Yan-lin. Present situtation and development tendency of manufacturing technologies of the large slab for heavy gauge plate[J]. China Metallurgy,2014,24(8):1.)
    [4] GAO Z Y,PAN T,WANG Z,et al. Hot deformation behavior of a novel Ni-Cr-Mo-B ultra-heavy plate steel by hot compression test[J]. Journal of Iron and Steel Research,International,2015,22(9):818.
    [5]李南,杨才福,张永权,等.轧制工艺对VN微合金化厚钢板截面不均匀性的影响[J].钢铁钒钛,2007,28(2):27.(LI Nan,YANG Cai-fu,ZHANG Yong-quan,et al. Effect of rolling schedule on section inhomogeneity of heavy plate microalloyed with VN[J]. Iron Steel Vanadium Titanium,2007,28(2):27.)
    [6]赵英杰.特厚钢板厚度方向组织性能变化规律的研究[J].山东冶金,2016,38(2):36.(ZHAO Ying-jie. Study on the microstructure and property change in the thickness direction of the ultra heavy plates[J]. Shandong Metallurgy,2016,38(2):36.)
    [7]杨东,唐郑磊,李红洋,等.低合金结构钢Q345B 420 mm特厚板的研发[J].中国冶金,2012,22(1):12.(YANG Dong,TANG Zheng-lei,LI Hong-yang,et al. Development of Q345B low-alloy structural steel of 420 mm in thickness[J]. China Metallurgy,2012,22(1):12.)
    [8]熊学慧,石彩燕,张虹.特厚板正火工艺的研究与应用[J].煤炭技术,2012,31(11):29.(XIONG Xue-hui,SHI Cai-yan,ZHANG Hong. Research and application after normalizing of special thick plate[J]. Coal Technology,2012,31(11):29.)
    [9] PAN T,WANG X Y,WANG H,et al. Chemistry design of Bcontaining ultra-heavy plate steels aided by Thermo-Calc calculation[J]. Journal of Iron and Steel Research,International,2011,18(s1):242.
    [10] PEI N N,ZHU G M,LI B,et al. 3D thermo-mechanical coupled simulation of whole rolling process for 60 kg/m heavy rail[J]. Journal of Iron and Steel Research,International,2014,21(12):1104.
    [11]张华伟,刘立忠,吴佳璐,等.轧制差厚板横向弯曲成形仿真与试验[J].中国冶金,2018,28(1):18.(ZHANG Hua-wei,LIU Li-zhong,WU Jia-lu,et al. Simulation and experiment on transverse ben-ding of tailor rolled blank[J]. China Metallurgy,2018,28(1):18.)
    [12]孙磊,张清东,张立元.带钢平整张力神经网络预设定模型研究[J].轧钢,2017,34(3):64.(SUN Lei,ZHANG Qing-dong,ZHANG Li-yuan. Neural netwoks based preset model of strip tension for CAPL temper mill[J]. Steel Rolling,2017,34(3):64.)
    [13]康永林,朱国明,汪水泽,等.数字化技术在板带及型钢轧制中的应用[J].轧钢,2017,34(2):1.(KANG Yong-lin,ZHU Guo-ming,WANG Shui-ze,et al. Application of digital technology in the plate-strip and section steel rolling[J]. Steel Rolling,2017,34(2):1.)
    [14]高雷,王彦辉,郭立伟,等.基于数据挖掘的冷轧轧制力优化方法研究[J].冶金自动化,2016,40(6):35.(GAO Lei,WANG Yan-hui,GUO Li-wei,et al. Study on the method of cold rolling force optimization based on data mining[J]. Metallurgical Industry Automation,2016,40(6):35.)
    [15]高志玉,潘涛,王卓,等.高淬透性硼微合金化特厚板钢成分优化设计[J].工程科学学报,2015,37(4):447.(GAO Zhi-yu,PAN Tao,WANG Zhuo,et al. Composition optimization design of boron-microalloying ultra-heavy plate steel with high hardenability[J]. Chinese Journal of Engineering,2015,37(4):447.)
    [16]贵永亮,秦晓岭,宋春燕,等.中厚板轧制变形过程的温度场数值模拟[J].材料导报,2013,27(1):139.(GUI Yong-liang,QIN Xiao-ling,SONG Chun-yan,et al. Numerical simulation of temperature field in plate rolling process[J]. Materials Review,2013,27(1):139.)
    [17] YUAN X Q,MAO C G,KONG W,et al. FEM study on inflow strain in heavy plate during rolling[J]. Baosteel Technical Research,2012,6(4):44.
    [18]马忠伟,张慧,胡鹏,等.中厚板边部折叠模拟实验及机理研究[J].工程科学学报,2015,37(12):1630.(MA Zhong-wei,ZHANG Hui,HU Peng,et al. Simulation experiments and mechanism of medium plate edge folding[J]. Chinese Journal of Engineering,2015,37(12):1630.)
    [19]柴箫君,张杰,李洪波,等.热轧金属横向流动规律及其对板形的影响[J].工程科学学报,2017,39(12):1859.(CHAI Xiaojun,ZHANG Jie,LI Hong-bo,et al. Transverse flow law of metals and its effect on the shape of a steel strip[J]. Chinese Journal of Engineering,2017,39(12):1859.)
    [20] FU T L,WANG Z D,LI Y,et al. The influential factor studies on the cooling rate of roller quenching for ultra heavy plate[J].Applied Thermal Engineering,2014,70(1):800.
    [21]王新平,李礼,张晓泳,等. TC18钛合金变形本构关系及其热轧过程有限元仿真的应用[J].中国有色金属学报,2013,23(2):379.(WANG X P,LI L,ZHANG X Y,et al. Constitutive relationship and its application in finite element simulation of hot rolling of TC18 titanium alloy[J]. The Chinese Journal of Nonferrous Metals,2013,23(2):379.)
    [22]麻永林,宫美娜,邢淑清,等. 304不锈钢带板形控制的有限元分析[J].钢铁,2015,50(2):48.(MA Y L,GONG M N,XING S Q,et al. FEM analysis of 304 stainless steel strip flatness control[J]. Iron and Steel,2015,50(2):48.)
    [23]冯刚,张朝阁,宫大为,等.基于有限元方法的疲劳裂纹闭合行为[J].钢铁,2016,51(5):1.(FENG G,ZHANG C G,GONG D W,et al. Closure behavior of fatigue crack by finite element method[J]. Iron and Steel,2016,51(5):1.)
    [24]魏海莲,刘国权,肖翔,等.表观的和基于物理的35Mn2钢奥氏体热变形本构分析[J].金属学报,2013,49(6):731.(WEI H L,LIU G Q,XIAO X,et al. Apparent and physically based constitutive analyses for hot deformation of austenite in 35Mn2steel[J]. Acta Metallurgica Sinica,2013,49(6):731.)
    [25]梁剑雄,雍岐龙,张良,等. 1Cr17Ni1双相不锈钢的热变形行为及其热加工图[J].钢铁,2016,51(9):82.(LIANG J X,YONG Q L,ZHANG L,et al. Hot deformation behavior and its processing map of 1Cr17Ni1 duplex stainless steel[J]. Iron and Steel,2016,51(9):82.)
    [26] Mirzadeh H,Cabrera J M,Najafizadeh A. Constitutive relationships for hot deformation of austenite[J]. Acta Materialia,2011,59(16):6441.
    [27] Zener C,Hollomon J H. Effect of strain rate upon plastic flow of steel[J]. Journal of Applied Physics,1944,15(1):22.
    [28] LI H Y,LI Y H,WANG X F,et al. A comparative study on modified Johnson Cook,modified Zerilli-Armstrong and Arrheniustype constitutive models to predict the hot deformation behavior in 28Cr Mn Mo V steel[J]. Materials and Design,2013,49:493.
    [29] GAO Z Y,KANG Y,LI Y S,et al. Study on elevated-temperature flow behavior of Ni-Cr-Mo-B ultra-heavy-plate steel via experiment and modelling[J]. Materials Research Express,2018,5(4):046520.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700