用户名: 密码: 验证码:
两种相态降水粒子对微波、毫米波衰减特性的影响分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects Analysis of Two-phase Precipitations on Microwave and Millimeter-wave Attenuation Characteristics
  • 作者:王金虎 ; 葛俊祥 ; 魏鸣 ; 张其林 ; 李祥超
  • 英文作者:Wang Jinhu;Ge Junxiang;Wei Ming;Zhang Qilin;Li Xiangchao;Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters,Nanjing University of Information Science and Technology;Key Laboratory of Meteorological Disaster,Ministry of Education,Nanjing University of Information Science and Technology;Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration,Nanjing University of Information Science and Technology;National Demonstration Center for Experimental Atmospheric Science and Environmental Meteorology Education,Nanjing University of Information Science & Technology;Jiangsu Key Laboratory of Meteorological Observation and Information Processing,Nanjing University of Information Science and Technology;
  • 关键词:厘米波气象雷达 ; 毫米波气象雷达 ; 冰相 ; 液相 ; M—P分布 ; 衰减特性
  • 英文关键词:Centimeter-wave meteorological radar;;Millimeter-wave meteorological radar;;Ice phase;;Liquid phase;;M—P distribution;;Attenuation property
  • 中文刊名:YGJS
  • 英文刊名:Remote Sensing Technology and Application
  • 机构:南京信息工程大学气象灾害预报预警与评估协同创新中心;南京信息工程大学气象灾害教育部重点实验室;南京信息工程大学中国气象局气溶胶—云—降水重点开放实验室;南京信息工程大学大气科学与环境气象国家级实验教学示范中心;南京信息工程大学江苏省气象探测与信息处理重点实验室;
  • 出版日期:2017-12-15
  • 出版单位:遥感技术与应用
  • 年:2017
  • 期:v.32;No.158
  • 基金:江苏省自然科学基金资助项目(BK20170945);; 南京信息工程大学2017年度地球科学虚拟仿真实验教学课程建设项目(XNFZ2017C02);; 中国气象局气溶胶与云降水重点开放实验室开放基金项目(KDW1703);; 2017年大气科学与环境气象实验实习教材建设项目(SXJC2017B03);; 国家自然科学基金项目(41275004、61372066、41675029);; 南京信息工程大学人才启动基金资助项目(2016r028)
  • 语种:中文;
  • 页:YGJS201706007
  • 页数:8
  • CN:06
  • ISSN:62-1099/TP
  • 分类号:69-76
摘要
厘米波雷达和毫米波雷达已广泛应用于云以及降水的观测,实际观测时会遇到不同相态(液相或者冰相)的降水粒子,研究气象雷达电磁波探测两种相态降水粒子时衰减特性的差异有助于更好地利用雷达回波信息反演降水粒子的微物理参数。假设气象雷达发射的频率分别为3、6、10GHz(厘米波雷达)以及35、94、140、220GHz(毫米波雷达),研究两种相态球形降水粒子的复介电常数随温度以及频率的变化,利用Lorenz-Mie理论研究单个降水粒子的衰减效率后发现,冰相降水粒子的振荡幅度大于液相降水粒子的幅度,虽然液相降水粒子的介电常数值大于冰相降水粒子的介电常数值。假设降水粒子谱满足M—P谱分布,计算降水粒子群的衰减系数随降雨率以及温度的变化,结果表明:当雷达发射频率≤35GHz时,液相降水粒子群的衰减系数大于冰相降水粒子群的衰减系数,但当雷达发射频率≥94GHz时,冰相降水粒子群的衰减系数大于液相降水粒子群的结果,原因在于此时冰相降水粒子衰减效率的振荡幅度及频次均大于液相降水粒子的情况。无论是冰相还是液相降水粒子群,其衰减系数随温度变化的影响较小,最后分别建立两种相态降水粒子的衰减系数与降雨率及温度的经验关系式。
        Centimeter-wave radar and millimeter wave radar have been widely used to detect cloud and precipitation,two-phase precipitations may be detected when radars detect meteorological targets and the study on the attenuation characteristics of two-phase precipitations can help us retrieve the micro-physical parameters of precipitation particles using radar echoes.Assuming precipitation meets M—P distribution,variations in the attenuation coefficient of precipitation as functions of rainfall rate and temperature,the results showed when the transmitting frequency of radar is less than or equal to 35 GHz,the attenuation coefficient of liquid-phase precipitation is larger than that of ice-phase precipitation,however this case is reverse when the transmitting frequency of radar is greater than 94 GHz,the reason is oscillating amplitude and times of the attenuation efficiency in the case of ice-phase precipitation particle are larger than that of liquid-phase precipitation particle.Whether ice-phase precipitation particle or liquid-phase precipitation,the attenuation coefficients are less affected by temperature changes.At last,the empirical formulas were established to describe the relationships amongst attenuation coefficient,rainfall rate and temperature.Assuming the frequencies of radars are 3 GHz、6 GHz、10 GHz(Centimeter-wave)and 35 GHz、94 GHz、140 GHz、220 GHz(millimeter-wave),variations in the complex dielectric constant of two-phase spherical precipitations as functions of temperature and frequency would be studied,the attenuation efficiency of single precipitation particle can be computed by Lorenz-Mie theory and the result showed that the oscillating amplitude of ice-phase precipitation particle is larger than that of liquid-phase precipitation particle though the permittivity of liquid-phase precipitation particle is larger than that of ice-phase precipitation particle.
引文
[1]Battan L J.Radar Observation of the Atmosphere[M].Chicago:The University of Chicago Press,1973:1-5.
    [2]Doviak R J,Zrnic D S.Doppler Radar&Weather Observations[M].New York:Academic Press,2014:6-8.
    [3]Fukao S,Hamazu K,Doviak R J.Radar for Meteorological and Atmospheric Observations[M].Heidelberg:Springer,2014:5-9.
    [4]Lhermitte R M.Centimeter&Millimeter Wavelength Radars in Meteorology[M].Florida:Lhermitte Publications,2002:5-10.
    [5]Wang J H,Ge J X,Zhang Q L,et al.Radar Cross-section Measurements of Ice Particles Using Vector Network Analyzer[J].AIP Advances,2016,6:1-10.
    [6]Wang J H,Ge J X,Wei M,et al.Study of the Relationship between IWC and Z for Nonspherical Ice Particles at Millimeter Wavelength[J].Journal of Tropical Meteorology,2016,22(S1):78-88.
    [7]Wang Jinhu,Ge Junxiang,Zhu Xiao,et al.Effect of Orientation and Air Content of Ice Particles on Radar Reflectivity Factor[J].Journal of Infrared and Millimeter Waves,2016,35(1):78-86.[王金虎,葛俊祥,祝潇,等.粒子取向以及空气含量对卷云雷达反射率因子的影响分析[J].红外与毫米波学报,2016,35(1):78-86.]
    [8]Lhermitte R.A 94-GHz Doppler Radar for Cloud Observations[J].Journal of Atmospheric and Oceanic Technology,1987,4(1):36-48.
    [9]Mead J B,Mcintosh R E,Vandemark D,et al.Remote Sensing of Clouds and Fog with a 1.4 mm Radar[J].Journal of Atmospheric and Oceanic Technology,1989,6(6):1090-1097.
    [10]Hitschfeld W,Bordan J.Errors Inherent in the Radar Measurement of Rainfall at Attenuating Wavelengths[J].Journal of Meteorology,1954,11:58-67.
    [11]Testud J,Le Bouar E,Obligis E,et al.The Rain Profiling Algorithm Applied to Polarimetric Weather Radar[J].Journal of Atmospheric and Oceanic Technology,2000,17:332-356.
    [12]Marielle Gosset,Isztar Zawadzki.Effect of Nonuniform Beam Filling on the Propagation of the Radar Signal at X-band Frequencies.Part I:Changes in the k(Z)Relationship[J].Journal of Atmospheric and Oceanic Technology,2001,18:1113-1126.
    [13]Matrosov S Y,Heymsfield A J.Estimating Ice Content and Extinction in Precipitating Cloud Systems from Cloud Sat Radar Measurements[J].Journal of Geophysical Research:Atmospheres,2008,113(D8):797-801.
    [14]Zhang Peichang,Wang Zhenhui.A Study on Algorithm to Make Attenuation Correction to Radar Observations of Radar Reflectivity Factor(I):Theoretical Analysis[J].Plateau Meteorology,2001,20(1):1-5.[张培昌,王振会.天气雷达回波衰减订正算法的研究(Ⅰ):理论分析[J].高原气象,2001,20(1):1-5.]
    [15]Wang Zhenhui,Teng Xu,Ji Lei,et al.A Study of the Relationship between the Attenuation Coefficient and Radar Reflectivity Factor for Spherical Particles in Clouds at Millimeter Wavelengths[J].Acta Meteorologica Sinica,2011,69(6):1020-1028.[王振会,滕煦,纪雷,等.球形粒子毫米波k-Z关系研究[J].气象学报,2011,69(6):1020-1028.]
    [16]Liu Xichuan,Liu Lei,Gao Taichang,et al.Effect of Different Precipitation on Characteristics of Millimeter Wave Propagation Characteristics[J].Journal of Infrared and Millimeter Waves,2013,32(4):379-384.[刘西川,刘磊,高太长,等.不同类型降水对毫米波传播特性的影响研究[J].红外与毫米波学报,2013,32(4):379-384.]
    [17]Wang Jinhu,Ge Junxiang,Wei Ming,et al.Research Progress on Theoretical Computation and Experimental Measurement of Scattering Properties of Ice Particles[J].Computing Technology and Automation,2013,32(3):128-131.[王金虎,葛俊祥,魏鸣,等.卷云冰晶粒子散射特性的理论计算与实验测量研究进展[J].计算技术与自动化,2013,32(3):128-131.]
    [18]Wang Jinhu,Ge Junxiang,Wei Ming,et al.Error Analysis of Equivalent Sphere Theory for Calculating the Scattering Properties of Ice Crystals at Millimeter Wavelength[J].Journal of Henan Normal University(Natural Science Editon),2014,42(5):40-44.[王金虎,葛俊祥,魏鸣,等.等效球理论计算冰晶粒子毫米波散射的误差分析[J].河南师范大学学报(自然科学版),2014,42(5):40-44.]
    [19]Wang J H,Ge J X,Wei M.Theoretical Study on Single-scattering Properties of Ice Particles of Different Orientation at 94GHz[J].Progress in Electromagnetics Research,2014,36:39-46.
    [20]Lorenz L.Lysbevgelsen I Og Uden for En Plane Lysblger Belyst Kugle[J].Vid.Selsle Skr,1890,(6):403-420.
    [21]Love A E H.The Scattering of Electric Waves by a Dielectric Sphere[J].Proceedings of the London Mathematical Society,1898,1(1):308-321.
    [22]Mie G.Beitrge Zur Optik Trüber Medien,Speziell Kolloidaler Metall9sungen[J].Annalen Der Physik,1908,330(3):377-445.
    [23]Van de Hulst H.C.Light Scattering by Small Particles[M].New York:Dover Press,1981:2-60.
    [24]Bohren C F,Huffman D R.Absorption and Scattering of Light by Small Particles[M].New York:Wiley Press,1983.
    [25]Mishchenko M I,Travis L D,Lacis A A.Scattering,Absorption,and Emission of Light by Small Particles[M].Oxford:Cambridge University Press,2002:15-18.
    [26]Ishimaru A.Wave Propagation and Scattering in Random Media[M].New York:Academic Press,1978:10-40.
    [27]Kong J A.Theory of Electromagnetic Waves[M].New York:Wiley Press,1975:1-20.
    [28]Xie Chufang,Rao Kejin.Electromagnetic Field and Electromagnetic Wave(4th Edition)[M].Beijing:Higher Education Press,2006:180-185.[谢处方,饶克谨.电磁场与电磁波(第4版)[M].北京:高等教育出版社,2006:180-185.]
    [29]Manabe T,Liebe H J,Hufford G A.Complex Permittivity of Water between 0and 30THz[C]//Proc.12th Int.Conf.on Infrared and Millimeter Waves,1987:229-230.
    [30]Hufford G.A Model for the Complex Permittivity of Ice at Frequencies below 1THz[J].International Journal of Infrared and Millimeter Waves,1991,12(7):677-682.
    [31]Jiang J H,Wu D L.Ice and Water Permittivities for Millimeter and Sub-millimeter Remote Sensing Applications[J].Atmospheric Science Letters,2004,5(7):146-151.
    [32]Koh G.Dielectric Properties of Ice at Millimeter Wavelengths[J].Geophysical Research Letters,1997,24(18):2311-2313.
    [33]Mtzler C,Wegmüller U.Dielectric Properties of Freshwater Ice at Microwave Frequencies[J].Journal of Physics D:Applied Physics,1987,20(12):1623.
    [34]Marshall J S,Palmer W M K.The Distribution of Raindrops with Size[J].Journal of Meteorology,1948,5(4):165-166.
    [35]Sauvageot H,Radar Meteorology[M].Boston:Artech House Press,1992:10-20.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700