用户名: 密码: 验证码:
抗生素菌渣热解N官能团变化特征及其与NO_x前驱物关系研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Evolution of nitrogen functionalities and their relation to NO_x precursors during pyrolysis of antibiotic mycelia wastes
  • 作者:詹昊 ; 林均衡 ; 黄艳琴 ; 阴秀丽 ; 刘华财 ; 袁洪友 ; 吴创之
  • 英文作者:ZHAN Hao;LIN Jun-heng;HUANG Yan-qin;YIN Xiu-li;LIU Hua-cai;YUAN Hong-you;WU Chuang-zhi;Key Laboratory of Renewable Energy,CAS,Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development,Guangzhou Institute of Energy Conversion,Chinese Academy of Sciences;University of Chinese Academy of Sciences;
  • 关键词:抗生素菌渣 ; N官能团 ; NOx前驱物 ; 低温热解 ; N去除
  • 英文关键词:AMWs;;nitrogen functionalities;;NOx precursors;;low-temperature pyrolysis;;nitrogen removal
  • 中文刊名:RLHX
  • 英文刊名:Journal of Fuel Chemistry and Technology
  • 机构:中国科学院广州能源研究所中国科学院可再生能源重点实验室广东省新能源和可再生能源重点实验室;中国科学院大学;
  • 出版日期:2017-10-18 09:55
  • 出版单位:燃料化学学报
  • 年:2017
  • 期:v.45
  • 基金:国家自然科学基金(51676195,51661145022)资助~~
  • 语种:中文;
  • 页:RLHX201710008
  • 页数:11
  • CN:10
  • ISSN:14-1140/TQ
  • 分类号:77-87
摘要
以青霉素菌渣(PMW)和土霉素菌渣(TMW)为对象,在水平管式反应器中进行快速热解,采用X射线光电子能谱(XPS)表征和化学吸收-分光光度定量分析方法,研究了抗生素菌渣热解N官能团变化特征及其与NO_x前驱物的关系。结果表明,菌渣燃料N官能团分为无机N(N-IN)和蛋白质及其水解产物N(N-A)两种。决定菌渣NO_x前驱物以NH_3-N为主,N官能团主要为N-A,PMW占81.1%、TMW占59.0%。在低温区间,N-IN在150-250℃分解和N-A在250-450℃转化,为NH3-N主要来源;PM W和TM W产率分别为20.9%和25.6%,而HCN-N产率小于2%,基本与燃料N官能团特征无关;该阶段伴随吡啶N(N-6)和吡咯N(N-5)的生成及转化,峰值在350-400℃。在高温区间,半焦N反应,主要是N-6和N-5的转化,为NH_3-N和部分HCN-N的来源;该阶段伴随少量更稳定质子化吡啶N(N-Q)和氮氧化物N(N-X)生成。由于N-IN和不稳定N-A低温下会快速分解,250-300℃下菌渣半焦N去除高达40%、能量损失可控制在25%,因此,采用合适低温热解处理菌渣,在保证能量前提下可有效去除燃料中的N。
        On the basis of rapid pyrolysis of two antibiotic mycelial wastes( AMWs),viz.,penicillin mycelia waste( PMW) and terramycinmycelial waste( TMW),in a horizontal tubular quartz reactor,evolution of nitrogen functionalities and their relation to NO_x precursors were investigated with the help of XPS and chemical absorption-spectrophotometry methods. The results indicate that inorganic-N( N-IN) and amide-N/amine-N/amino-N( N-A) are two kinds of nitrogen functionalities in the raw AMWs samples, determining the predominance of NH3-N among NO_x precursors. N-A is found to be the main one with the proportion of 81.1%and 59. 0% for PMW and TMW,respectively. At low temperatures,the decomposition of N-IN and the conversion of N-A mainly occur at 150-250 ℃ and 250-450 ℃,respectively,which are two routes for most NH3-N with yields of 20.9%( PMW) and 25.6%( TMW). While HCN-N is produced with a small amount less than 2%,having no relationship with the characteristics of nitrogen functionalities in fuels. Besides,pyridinic-N( N-6) and pyrrolic-N( N-5) are also formed and then converted with peak values at 350-400 ℃. At high temperatures,the conversion of N-6 and N-5 is prevailing,leading to the basically equal increments on NH3-N and HCN-N. Simultaneously,a minor amount of more stable quaternary nitrogen( N-Q) and N-oxide( N-X) is produced. Typically,due to the rapid decomposition of N-IN and labile N-A at low-temperature pyrolysis,nitrogen removal can reach up to 40% while energy loss can be controlled within 25% when pyrolyzing at 250-300 ℃. As a result,low-temperature pyrolysis could be an effective method for nitrogen removal whereas preserving the energy in AMWs.
引文
[1]贡丽鹏,郭斌,任爱玲,刘仁平,宋汉宁.抗生素菌渣理化特性[J].河北科技大学学报,2012,33(2):190-196.(GONG Li-peng,GUO Bin,REN Ai-ling,LIU Ren-ping,SONG Han-ning.Physical and chemical properties of antibiotics bacterial residue[J].J Heibei Univ Sci Technol,2012,33(2):190-196.)
    [2]许光文,纪文峰,刘周恩,万印华,张小勇.轻工生物质过程残渣高值化利用必要性与技术路线分析[J].过程工程学报,2009,9(3):618-624.(XU Guang-wen,JI Wen-feng,LIU Zhou-en,WAN Yin-hua,ZHANG Xiao-yong.Necessity and technical route of value-added utilization of biomass process residues in light industry[J].Chin J Process Eng,2009,9(3):618-624.)
    [3]GUO B,GONG L,DUAN E,LIU R,REN A,HAN J,ZHAO W.Characteristics of penicillin bacterial residue[J].J Air Waste Manage,2012,62(4):485-8.
    [4]ZHANG G Y,MA D C,PENG C N,LIU X X,XU G W.Process characteristics of hydrothermal treatment of antibiotic residue for solid biofuel[J].Chem Eng J,2014,252(252):230-238.
    [5]Ma D C,Zhang G Y,Zhao P T,AREEPRASERT C,SHEN Y F,YOSHIKAWA K,XU G W.Hydrothermal treatment of antibiotic mycelial dreg:M ore understanding from fuel characteristics[J].Chem Eng J,2015,273(8):147-155.
    [6]尤占平,郝长生,焦永刚,赵亮,封春红.两种抗生素菌渣热解及燃烧特性对比研究[J].工业安全与环保,2016,42(05):41-43.(YOU Zhan-ping,HAO Chang-sheng,JIAO Yong-gang,ZHAO Liang,FENG Chun-hong.Pyrolysis and combustion characteristics comparison studies of tw o kinds of antibiotic residues[J].Ind Safety Environ Prot,2016,42(05):41-43.)
    [7]贡丽鹏.土霉素菌渣热解技术的研究[D].石家庄:河北科技大学,2012.(GONG Li-peng.Research on pyrolysis technology of terramycin bacterial residue[D].Shijiazhuang:Hebei University of Science&Technology,2012.)
    [8]ZHOU B H,GAO Q,WANG H H,DUAN E H,GUO B,ZHU N.Preparation,characterization,and phenol adsorption of activated carbons from oxytetracycline bacterial residue[J].J Air Waste M anage,2012,62(12):1394-1402.
    [9]YANG S J,ZHU X D,WANG J S,XING J,LIU Y C,FENG Q,ZHANG S C,CHEN J M.Combustion of hazardous biological waste derived from the fermentation of antibiotics using TG-FTIR and Py-GC/M S techniques[J].Bioresource Technol,2015,193:156-163.
    [10]DU Y Y,JIANG X G,MA X J,LIU X D,LV G J,JIN Y Q,WANG F,CHI Y,YAN J H.Evaluation of cofiring bioferment residue with coal at different proportions:Combustion characteristics and kinetics[J].Energy Fuels,2013,27(10):6295-6303.
    [11]BALAT M,BALAT M,KIRTAY E,BALAT H.Main routes for the thermo-conversion of biomass into fuels and chemicals.Part 1:Pyrolysis systems[J].Energy Convers M anage,2009,50(12):3147-3157.
    [12]HANSSON K M,SAMUELSSON J,TULLIN C,AMAND L E.Formation of HNCO,HCN,and NH3from the pyrolysis of bark and nitrogen-containing model compounds[J].Combust Flame,2004,137(3):265-277.
    [13]CAO J J,SHEN Z X,CHOW J C,WATSON J G,LEE S C,TIE X X,HO K F,WANG G H,HAN Y M.Winter and summer PM2.5chemical compositions in fourteen chinese cities[J].J Air Waste M anage,2012,62(10):1214-1226.
    [14]TIAN F J,LI B Q,CHEN Y,LI C Z.Formation of NOxprecursors during the pyrolysis of coal and biomass.Part V.Pyrolysis of a sew age sludge[J].Fuel,2002,81(17):2203-2208.
    [15]TIAN F J,YU J L,MCKENZIE L J,HAYASHI J I,CHIBA T,LI C Z.Formation of NOxprecursors during the pyrolysis of coal and biomass.Part VII.Pyrolysis and gasification of cane trash w ith steam[J].Fuel,2005,84(4):371-376.
    [16]CAO J P,LI L Y,MORISHITA K,XIAO X B,ZHAO X Y,WEI X Y,TAKARADA T.Nitrogen transformations during fast pyrolysis of sew age sludge[J].Fuel,2013,104:1-6.
    [17]TIAN Y,ZHANG J,ZUO W,CHEN L,CUI Y N,TAN T.Nitrogen conversion in relation to NH3and HCN during microw ave pyrolysis of sew age sludge[J].Environ Sci Technol,2013,47(7):3498-3505.
    [18]WEI L H,WEN L,YANG T H,ZHANG N.Nitrogen transformation during sewage sludge pyrolysis[J].Energy Fuels,2015,29(8):5088-5094.
    [19]成建华,张文莉.抗生素菌渣处理工艺设计[J].化工与医药工程,2003,24(2):31-34.(CHENG J H,ZHANG W L.Technological design of antibiotic residue treatment[J].Chem Pharm Eng,2003,24(2):31-34.)
    [20]MA D C,ZHANG G Y,AREEPRASERT C,LI C X,SHEN Y F,YOSHIKAWA K,XU G W.Characterization of NO emission in combustion of hydrothermally treated antibiotic mycelial residue[J].Chem Eng J,2016,284(1):708-715.
    [21]ZHU X D,YANG S J,WANG L,LIU Y C,QIAN F,YAO W Q,ZHANG S C,CHEN J M.Tracking the conversion of nitrogen during pyrolysis of antibiotic mycelial fermentation residues using XPS and TG-FTIR-M S technology[J].Environ Pollut,2016,211:20-27.
    [22]CHEN H F,WANG Y,XU G W,YOSHIKAWA K.Fuel-N evolution during the pyrolysis of industrial biomass wastes with high nitrogen content[J].Energies,2012,5(12):5418-5438.
    [23]ZHAN H,YIN X L,Huang Y Q,Zhang X H,Yuan H Y,Xie J J,Wu C Z.Characteristics of NOxprecursors and their formation mechanism during pyrolysis of herb residues[J].J Fuel Chem Technol,2017,45(3):279-288.
    [24]KELEMEN S R,AFEWORKI M,GORBATY M L,KWIATEK P J,SANSONE M,WALTERS C C,COHEN A D.Thermal transformations of nitrogen and sulfur forms in peat related to coalification[J].Energy Fuels,2006,20(2):635-652.
    [25]TIAN K,LIU W J,QIAN T T,JIANG H,YU H Q.Investigation on the evolution of N-containing organic compounds during pyrolysis of sew age sludge[J].Environ Sci Technol,2014,48(18):10888-10896.
    [26]李梅,杨俊和,张启锋,常海洲,孙慧.用XPS研究新西兰高硫煤热解过程中氮、硫官能团的转变规律[J].燃料化学学报,2013,41(11):1287-1293.(LI Mei,YANG Jun-he,ZHANG Qi-feng,CHANG Hai-zhou,SUN Hui.XPS study on transformation of N-and S-functionalgroups during pyrolysis of high sulfur New Zealand coal[J].J Fuel Chem Technol,2013,41(11):1287-1293.)
    [27]郭斌,贡丽鹏,刘仁平,任爱玲,宋汉宁.土霉素菌渣的热解特性及动力学研究[J].太阳能学报,2013,34(9):1504-1508.(GUO Bin,GONG Li-peng,LIU Ren-ping,REN Ai-ling,SONG Han-ling.Study on pyrolysis characteristics and kinetics of terramycin bacterial residue[J].Acta Energi Sin,2013,34(9):1504-1508.)
    [28]詹昊,张晓鸿,阴秀丽,吴创之.生物质热化学转化过程含N污染物形成研究进展[J].化学进展,2016,28(12):1880-1890.(ZHAN Hao,ZHANG Xiao-hong,YIN Xiu-li,WU Chuang-zhi.Formation of nitrogenous pollutants during biomass thermo-chemical conversion[J].Prog Chem,2016,28(12):1880-1890.)
    [29]CHEN H F,NAMIOKA T,YOSHIKAWA K.Characteristics of tar,NOxprecursors and their absorption performance w ith different scrubbing solvents during the pyrolysis of sew age sludge[J].Appl Energ,2011,88(12):5032-5041.
    [30]HANSSON K M,AMAND L E,HABERMANN A,WINTER F.Pyrolysis of poly-L-leucine under combustion-like conditions[J].Fuel,2003,82(6):653-660.
    [31]刘海明,张军营,郑楚光,孟韵.煤中吡咯型和吡啶型氮热解稳定性研究[J].华中科技大学学报:自然科学版,2004,32(11):13-15.(LIU Hai-ming,ZHANG Jun-ying,ZHENG Chu-guang,MENG Yun.Quantum chemical study of the pyrolysis stability of pyrrolic nitrogen and pyridinic nitrogen in coal[J].J Huazhong Univ Sci Technol:Nat Sci Ed,2004,32(11):13-15.)
    [32]XIE Z L,FENG J,ZHAO W,XIE K C,PRATT K C,LI C Z.Formation of NOxand SOxprecursors during the pyrolysis of coal and biomass.Part IV.Pyrolysis of a set of Australian and Chinese coals[J].Fuel,2001,80(15):2131-2138.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700