用户名: 密码: 验证码:
低成熟度页岩油加热改质热解动力学及地层渗透性
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Organic matter pyrolysis kinetics and formation permeability variation during upgrading process of low-maturity shale oil
  • 作者:王益维 ; 汪友平 ; 孟祥龙 ; 苏建政 ; 龙秋莲
  • 英文作者:Wang Yiwei;Wang Youping;Meng Xianglong;Su Jianzheng;Long Qiulian;State Energy Center for Shale Oil Research and Development;Petroleum Exploration and Production Research Institute,SINOPEC;
  • 关键词:渗透率 ; 活化能 ; 组分动力学 ; 反应动力学 ; 原位加热 ; 有机质热解 ; 低成熟度 ; 页岩油
  • 英文关键词:permeability;;activation energy;;compositional kinetics;;reaction kinetics;;in-situ heating;;pyrolysis of organic matter;;low maturity;;shale oil
  • 中文刊名:SYYT
  • 英文刊名:Oil & Gas Geology
  • 机构:国家能源页岩油研发中心;中国石化石油勘探开发研究院;
  • 出版日期:2019-04-16 17:58
  • 出版单位:石油与天然气地质
  • 年:2019
  • 期:v.40
  • 基金:国家科技重大专项(2017ZX050490303);; 国家自然科学基金项目(U1663208)
  • 语种:中文;
  • 页:SYYT201903024
  • 页数:7
  • CN:03
  • ISSN:11-4820/TE
  • 分类号:232-238
摘要
低成熟度页岩油加热改质是采用加热井对地层进行加热,将地层中滞留的重质烃转化为轻质烃,同时将尚未转化的固体有机质热解生成油气后采出。热解油气生成量预测及地层孔渗变化是页岩油改质开采研究的难点和挑战之一。利用页岩井下取心样品,采用黄金管实验装置,研究了页岩加热过程中的有机质热解规律及组分动力学,获得了烃类气体、轻质油及重质油的生成动力学参数。结果表明,在温度为280~500℃范围内,油的生成量先增后减,而气体量持续增加;低速升温条件下的转化率随温度变化曲线左移,热解温度变低。重质油、轻质油和气态烃的活化能分别为39~49,57~74和56~59 kcal/mol;动力学模型可预测任意时间的烃类生成量。应用三轴高温渗透率测试装置,获得了页岩从室温到高温(550℃)条件下的氮气测试渗透率动态变化规律。结果显示,页岩加热过程中的渗透性变化分为下降段、上升段和稳定段,在温度达到有机质热解温度后,基质及裂缝渗透率均出现明显改善,比初始渗透率提高1~2个数量级。热解油气生成量及渗透率变化可为低成熟度页岩油加热改质开采的产量预测提供依据。
        Shale oil upgrading entails heating of formation through boreholes to convert heavy hydrocarbons in pore space into light ones,and it also stimulate the generation of oil and gas from kerogen through pyrolysis. Prediction of hydrocarbon yield through pyrolysis and changes of formation porosity and permeability are the challenges for shale oil upgrading and recovery. Organic matter pyrolysis and composition transformation in sample cores from shale wells during heating process using gold tube testing device were observed,and the formative kinetic parameters of hydrocarbon gases,light and heavy oil were calculated. The results show that oil generation increases first and then decreases through the temperature range of 280 ℃-500 ℃ while gas generation increases constantly. Under lower heating rate,the conversion curve shifts to the left and the pyrolysis temperature decreases. The kinetic parameters of pyrolysis of heavy oil,light oil and hydrocarbon gases were obtained,and the kinetic model can predict hydrocarbon generation amount at any time. The activation energy of heavy and light oil as well as gaseous hydrocarbons is 39-49 kcal/mol,57-74 kcal/mol and 56-59 kcal/mol respectively. In addition,shale permeability variation during the heating process( from ambient temperature to 550 ℃)were measured through nitrogen tests under triaxial stresses and high temperature. The results show that the permeability curve during the heating process can be divided into three stages,namely descending,ascending and stabilizing stages.Both the matrix permeability and fracture permeability improve remarkably by 1-2 orders of magnitude when reaching pyrolysis temperature. In short,generation of pyrolysis hydrocarbons and permeability variation may serve as a basis for production prediction of oil upgrading and recovery in low-maturity shales.
引文
[1] Ungger P,Pelet R. Extrapolation of the kinetics of oil and gas formation from laboratory experiments to sedimentary basins[J]. Nature,1987,327:52-54.
    [2] Lu S F,Fu X T,Liu X Y,et al. Kinetic model of oil-formed gas and its calibration. Natural Gas Industry[J],1996,16(6):6-9.
    [3] Shen Z M. Some kinetic characteristics of hydrocarbon generation of soluble organic matter in low-mature source rocks. Geological Review[J],1999,45(1):85-91.
    [4] Jereny Boak. Oil shale is now the time[R]. Garfield county energy advisory board:Colorado School of Mines,2011.
    [5] Bartis J T,LA Tourrette,Dixon L,et a1. Oil shale development in the United States[R]. Prospects and policy issues:The RAND Corporation,2005.
    [6] Mitchell Leverette. Status and plans for the U. S. department of interior program for development of oil shale and oil sands[R]. 31th Oil Shale Symposium,2011.
    [7] Harold Vinegar. Shell’S in-situ conversion process[R],Colorado:26th Oil Shale Symposium,2006.
    [8] Tanaka P L,Yeakel J D,Symington W A,et a1. Plan to test ExxonMobil’S in situ oil shale technology on a proposed RD&D lease[R].Colorado:31th Oil Shale Symposium,2011.
    [9] Indrek Aarna. Life cycle carbon intensity,water use of upgraded shale oil products using the enet280 technology[R]. Colorado:31st Oil Shale Symposium,2011.
    [10] JacobH Bauman,Milind D D. Parameter space reduction and sensitivity analysis in complex thermal subsurface production processes[J]. Energy and Fuels,25(1):251-259,2011.
    [11] Burnham A K,Braun R L. Global kinetic analysis of complex materials[J]. Energy and Fuels,13(1):1-22,1999.
    [12] Braun R L,Burnham A K. A flexible model of oil and gas generation cracking and expulsion[J]. Organic Geochemistry,19:161-172,1992.
    [13]刘金钟,唐永春.用干酪根生烃动力学方法预测甲烷生成量之一例[J].科学通报,1998,43(11):1187-1191.Liu Jinzhong,Tang Yongchun. An example of predicting methane production by kinetic method of kerogen hydrocarbon generation[J].Chinese Science Bulletin,1998,43(11):1187-1191.
    [14]杜玉明.惠民凹陷南坡煤成气成藏动力学研究[D].广州:中国科学院广州地球化学研究所,2004.Du Yuming. Research on dynamics of coal formed gas reservoir in the south slope of Huimin Sag[D]. Guangzhou:Guangzhou Institute of Geochemistry,Chinese Academy of Sciences,2004.
    [15]汪友平,王益维,孟祥龙,等.流体加热方式原位开采油页岩新思路[J].石油钻采工艺,2014,36(4):71-74.Wang Youping,Wang Yiwei,Meng Xianglong,et al. A new idea for in-situ retorting oil shale by way of fluid heating technology[J]. Oil Drilling&Production Technology,2014,36(4):71-74.
    [16]汪友平,王益维,孟祥龙,等.美国油页岩原位开采技术与启示[J].石油钻采工艺,2013,35(6):55-59.Wang Youping,Wang Yiwei,Meng Xianglong,et al. Enlightenment of American’s oil shale in-situ retorting technology[J]. Oil Drilling&Production Technology,2013,35(6):51-59.
    [17]钱家麟,尹亮.油页岩:石油的补给能源[M].北京:中国石化出版社,2008.Qian Jialin,Yin Liang. Oil shale:Petroleum alternative[M]. Beijing:China Petrochemical Press,2008.
    [18]卢双舫.有机质成烃动力学理论及其应用[M].北京:石油工业出版社,1996.Lu Shuangfang. Kinetic theory of hydrocarbon formation of organic matter and its application[M]. Beijing:Petroleum Industry Press,1996.
    [19]康志勤,王玮,曹伟,等.原位开采背景下油页岩渗透规律的研究[J].太原理工大学学报,2013,44(6):768-770.Kang Zhiqin,Wang Wei,Cao Wei,et al. Experimental study of permeating law of oil shale under in-situ process[J]. Journal of Taiyuan University of Technology,2013,44(6):768-770.
    [20]刘均荣,秦积舜,吴晓东.温度对岩石渗透率影响的实验研究[J].石油大学学报(自然科学版). 2001,25(4):51-53.Liu Junrong,Qin Jishun,Wu Xiaodong. Experimental research on the effect of temperature on rock permeability[J]. 2001,25(4):51-53.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700