用户名: 密码: 验证码:
淹没水射流关键参数对天然气水合物沉积物冲蚀体积的影响规律研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influence of key parameters of submerged water jets on the erosion volume of natural gas hydrate sediments
  • 作者:靳成才 ; 陈晨 ; 潘栋彬 ; 朱颖 ; 李曦桐 ; 钟秀平 ; 张晗 ; 张颖
  • 英文作者:JIN Chengcai;CHEN Chen;PAN Dongbin;ZHU Ying;LI Xitong;ZHONG Xiuping;ZHANG Han;ZHANG Ying;College of Construction Engineering, Jilin University;Key Laboratory of Drilling and Exploitation Technology in Complex Conditions of Ministry of Natural Resources;State Key Laboratory of Superhard Materials;
  • 关键词:水射流参数 ; 天然气水合物沉积物 ; 流固耦合 ; 数值模拟 ; 冲蚀体积
  • 英文关键词:water jet parameters;;gas hydrate sediments;;fluid-solid coupling;;numerical simulation;;erosion volume
  • 中文刊名:TKGC
  • 英文刊名:Exploration Engineering(Rock & Soil Drilling and Tunneling)
  • 机构:吉林大学建设工程学院;自然资源部复杂条件钻采技术重点实验室;超硬材料国家重点实验室;
  • 出版日期:2019-05-10
  • 出版单位:探矿工程(岩土钻掘工程)
  • 年:2019
  • 期:v.46;No.396
  • 基金:国家自然科学基金面上项目“高压低温水射流作用下海底天然气水合物储层破岩过程与机理研究”(编号:41672361);; 吉林省科技发展计划项目,国际科技合作项目“海洋天然气水合物置换开采关键技术研究”(编号:20170414044GH)
  • 语种:中文;
  • 页:TKGC201905001
  • 页数:7
  • CN:05
  • ISSN:11-5063/TD
  • 分类号:8-14
摘要
高压水射流技术具有工作介质来源广泛与环保等优点,能够用于海底天然气水合物储层破碎。本文运用LS-DYNA有限元程序对淹没状态下高压水射流对海洋天然气水合物沉积物破碎过程进行数值模拟,研究了射流速度、喷嘴直径、靶距、入射角度4项关键参数对含水合物沉积物冲蚀体积的影响,得出以下主要结论:含水合物沉积物破碎需要满足射流速度大于临界流速;随着射流速度的增加冲蚀体积逐渐增大;喷嘴直径的增加会导致沉积物径向冲蚀体积的增大,从而使总体冲蚀体积增大;靶距的增加会使水射流在水域运动过程中能量损失增大,导致冲蚀体积的减小;在喷嘴入射角度增大过程中冲蚀体积先增大后减小最后趋于稳定,当入射角度为10°时冲蚀体积能够达到最大值。
        The high-pressure water jet technology provides many advantages such as a wide range of working mediums, environmental-soundness, and can be used to break the submarine gas hydrate formations. In this paper, the LS-DYNA finite element program is used to simulate the fragmentation process of submarine gas hydrate formations with high-pressure water jets under the submerged condition. The effects of four key parameters(jet velocity, nozzle diameter, target distance and incident angle) on the erosion volume of hydrate formations are studied. The following conclusions are drawn: the requirement that jet velocity is higher than the critical velocity needs to be met for fragmentation of hydrate sediments; the erosion volume gradually increases with the increase of jet velocity; the increase of nozzle diameter will lead to the increase of the radial erosion volume of formations, hence the overall erosion volume; the increase of target distance will increase the energy loss of water jets in the process of water movement, leading to the decrease of the erosion volume; the erosion volume will increase first and then decrease with the increase of nozzle incidence angle, eventually becoming stable. When the incident angle is 10°, the erosion volume can reach the maximum value.
引文
[1] 杨林,赵大军,郭威,等.天然气水合物泥浆制冷系统的野外试验研究[J].探矿工程(岩土钻掘工程),2013,40(12):25-27,31.YANG Lin,ZHAO Dajun,GUO Wei,et al.Field test study on gas hydrate mud refrigeration system[J].Exploration Engineering (Rock & Soil Drilling and Tunneling),2013,40 (12):25-27,31.
    [2] Qorbani K,Kvamme B,Kuznetsova T.Using a reactive transport simulator to simulate CH4 production from bear island basin in the Barents Sea utilizing the depressurization method[J].Energies,2017,10:187.
    [3] 中国能源编辑部.可燃冰成新矿种将加快推进产业化[J].中国能源,2017,39(11):1.Energy of China.A new mineral “gas hydrate” will accelerate industrialization[J].Energy of China,2017,39(11):1.
    [4] Yang L,Chen C,Jia R,et al.Influence of reservoir stimulation on marine gas hydrate conversion efficiency in different accumulation conditions[J].Energies,2018,11(2):339.
    [5] 李冰.祁连山冻土区天然气水合物试采数值模拟及置换开采实验研究[D].吉林长春:吉林大学,2016.LI Bing.Numerical simulations of production trial and experimental research on replacement method of gas hydrate in Qilian mountain permafrost[D].Changchun Jilin:Jilin University,2016.
    [6] Moon C,Taylor P C,Rodger P M.Clathrate nucleation and inhibition from a molecular perspective[J].Revue Canadienne De Physique,2003,81:451-457.
    [7] 薛胜雄.高压水射流技术工程[M].安徽合肥:合肥工业大学出版社,2006.XUE Shengxiong.High pressure waterjet technology & engineering[M].Hefei Anhui:Hefei University of Technology Press,2006.
    [8] 孙家骏.水射流切割技术[M].江苏徐州:中国矿业大学出版社,1992.SUN Jiajun.Water jet cutting technology[M].Xuzhou Jiangsu:China University of Mining and Technology Press,1992.
    [9] 高文爽.油页岩钻孔水力开采实验台设计及孔底流场数值模拟研究[D].吉林长春:吉林大学,2011.GAO Wenshuang.Research on fluid transportation of bottom-hole of oil shale and its laboratory bench design[D].Changchun Jilin:Jilin University,2011.
    [10] 温继伟.油页岩钻孔水力开采用射流装置的数值模拟与实验研究[D].吉林长春:吉林大学,2014.WEN Jiwei.Numerical simulation and experimental research on the jet devices for hydraulic borehole mining of oil shale[D].Changchun Jinlin:Jilin University,2014.
    [11] 周守为,陈伟,李清平,等.深水浅层非成岩天然气水合物固态流化试采技术研究及进展[J].中国海上油气,2017,29(4):1-8.ZHOU Shouwei,CHEN Wei,LI Qingping,et al.Research on the solid fluidization well testing and production for shallow non-diagenetic natural gas hydrate in deep water area[J].China Offshore Oil and Gas,2017,29 (4):1-8.
    [12] 朱伯芳.有限单元法原理与应用[M].北京:中国水利电力出版社,1979.ZHU Bofang.The finite element method theory and applications[M].Beijing:China Water Conservancy and Electric Power Press,1979.
    [13] 时党勇,李裕春,张胜民.基于ANSYS/LS-DYNA 8.1进行显式动力分析[M].北京:清华大学出版社,2005.SHI Dangyong,LI Yuchun,ZHANG Shengmin.Explicit dynamic analysis based on ANSYS/LS-DYNA 8.1[M].Beijing:Tsinghua University Press,2005.
    [14] 孙琦,周军,林鹏.基于LS-DYNA的弹体撞水过程流固耦合动力分析[J].系统仿真学报,2010,22(6):1498-1501.SUN Qi,ZHOU Jun,LIN Peng.Dynamic analysis of fluid-structure interaction for water impact of projectile using LS-DYNA[J].Journal of System Simulation,2010,22(6):1498-1501.
    [15] 黄飞.水射流冲击瞬态动力特性及破岩机理研究[D].重庆:重庆大学,2015.HUANG Fei.On the transient dynamics of water jet im-pinging target and the mechanism of water jet breaking rock[D].Chongqing:Chongqing University,2015.
    [16] 刘佳亮,司鹄,张宏.淹没状态下高压水射流破岩效率分析[J].中国安全科学学报,2012,22(11):23-29.LIU Jialiang,SI Gu,ZHANG Hong.Study on breaking rock efficiency of submerged water jet[J].China Safety Science Journal,2012,22 (11):23-29.
    [17] Liu S,Liu Z,Cui X,et al.Rock breaking of conical cutter with assistance of front and rear water jet[J].Tunnelling & Underground Space Technology Incorporating Trenchless Technology Research,2014,42(5):78-86.
    [18] 倪红坚,王瑞和.高压水射流射孔过程及机理研究[J].岩土力学,2004,25(S1):29-32.NI Hongjian,WANG Ruihe.Study on progress and mechanism of high pressure water jet perforation[J].Rock and Soil Mechanics,2004,25(S1):29-32.
    [19] 倪红坚,王瑞和,张延庆.高压水射流作用下岩石破碎机理及过程的数值模拟研究[J].应用数学和力学,2005,26(12):1445-1452.NI Hongjian,WANG Ruihe,ZHANG Yanqing.Numerical simulation study on rock breaking mechanism and process under high pressure water jet[J].Applied Mathematics and Mechanics,2005,26(12):1445-1452.
    [20] 顾磊,倪福生,张浩.基于ALE方法的射流冲刷砂土和黏土的数值计算[J].科学技术与工程,2017,17(11):103-107.GU Lei,NI Fusheng,ZHANG Hao.Numerical simulation of water-jet-erosion of sand and clay using ALE method[J].Science Technology and Engineering,2017,17(11):103-107.
    [21] Clayton C R I,Priest J A,Best A I.The effects of disseminated methane hydrate on the dynamic stiffness and damping of a sand[J].Géotechnique,2005,55(6):423-434.
    [22] 宁伏龙,吴能友,李实,等.基于常规测井方法估算原位水合物储集层力学参数[J].石油勘探与开发,2013,40(4):507-512.NING Fulong,WU Nengyou,LI Shi,et al.Estimation of in-situ mechanical properties of gas hydrate-bearing sediments by well logging[J].Petroleum Exploration and Development,2013,40(4):507-512.
    [23] Luo T,Song Y,Zhu Y,et al.Triaxial experiments on the mechanical properties of hydrate-bearing marine sediments of South China Sea[J].Marine & Petroleum Geology,2016,77:507-514.
    [24] Lu Y,Huang F,Liu X,et al.On the failure pattern of sandstone impacted by high-velocity water jet[J].International Journal of Impact Engineering,2015,76:67-74.
    [25] Momber A W.Wear of rocks by water flow[J].International Journal of Rock Mechanics & Mining Sciences,2004,41(1):51-68.
    [26] 张旭辉,王淑云,李清平.天然气水合物沉积物力学性质的试验研究[J].岩土力学,2010,31(10):3069-3074.ZHANG Xuhui,WANG Shuyun,LI Qingping.Experimental study of mechanical properties of gas hydrate deposits[J].Rock and Soil Mechanics,2010,31(10):3069-3074.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700