用户名: 密码: 验证码:
西藏班公湖-怒江缝合带西段野马去申拉组富Nb火山岩的发现及其指示意义
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The discovery of Nb-rich volcanic rock of the Qushenla Formation in Yema area of the western segment of Bangong Co-Nujiang suture in Tibet and its implications
  • 作者:吴建亮 ; 尹显科 ; 刘文 ; 雷传扬 ; 王波 ; 李威 ; 裴亚伦 ; 张伟
  • 英文作者:WU Jianliang;YIN Xianke;LIU Wen;LEI Chuanyang;WANG Bo;LI Wei;PEI Yalun;ZHANG Wei;Evaluation and Utilization of Strategic Rare Metals and Rare Earth Resource Key Laboratory of Sichuan Geological Survey;
  • 关键词:富Nb玄武岩 ; 安山岩 ; 弧后盆地 ; 去申拉组 ; 班公湖-怒江缝合带
  • 英文关键词:Nb-rich basalt;;andesite;;back-arc basin;;Qushenla Formation;;Bangong Co-Nujiang suture zone
  • 中文刊名:ZQYD
  • 英文刊名:Geological Bulletin of China
  • 机构:四川省地质调查院稀有稀土战略资源评价与利用四川省重点实验室;
  • 出版日期:2019-04-15
  • 出版单位:地质通报
  • 年:2019
  • 期:v.38;No.287
  • 基金:中国地质调查局项目《西藏日土县昂龙岗日地区I44E019013幅等三幅1∶5万区域地质调查、班公湖-怒江铜多金属矿资源基地调查》(编号:DD20160026)
  • 语种:中文;
  • 页:ZQYD201904001
  • 页数:13
  • CN:04
  • ISSN:11-4648/P
  • 分类号:5-17
摘要
以班公湖-怒江缝合带西段的去申拉组玄武岩和安山岩为研究对象,进行了岩石锆石测年和地球化学研究。测年结果显示,安山岩形成于108.5±1.5Ma,属于早白垩世晚期。岩石地球化学特征表明,野马去申拉组玄武岩Nb含量为10.5×10-6~11.1×10~(-6),Al_2O_3含量为17.63%~17.96%(平均值17.74%),属于富Nb高铝玄武岩,为中钾钙碱性系列;安山岩属于高钾钙碱性系列岩石。野马火山岩轻、重稀土元素分异明显,其中玄武岩稀土元素总量为119.20×10~(-6)~120.49×10~(-6),(La/Yb)_N值为5.17~5.53;安山岩稀土元素总量为179.97×10~(-6)~184.75×10~(-6),(La/Yb)_N值为13.83~15.12;二者在微量元素上表现出不同程度的富集轻稀土元素和大离子亲石元素,Nb、Ta、Ti等高场强元素相对亏损,具低Cr、Ni,高Sr、Nb、Zr含量,发育岛弧火山岩相关特征。其岩浆源区受俯冲流体的影响较大,后经历了不同程度的铁镁矿物的结晶分离作用。综合分析认为,野马去申拉组火山岩可能形成于弧后盆地构造环境下,是班公湖-怒江特提斯洋岩石圈南向俯冲过程中板片断离导致软流圈地幔上涌,诱发弧后拉张背景下的直接岩浆响应。
        The volcanic rocks from Qushenla Formation in Yema area is located in the west segment of Bangong Co-Nujiang suture zone, in reverse fault contact with the diabase slice of Bangong Co-Nujiang opiolite melange belt in the north. In this paper, detailed LA-ICP-MS zircon U-Pb dating geochronological and element geochemical studies were carried out for the basalt and andesite in the Qushenla Formation. The U-Pb dating of zircon from andesite yielded a weighted average age of 108.5±1.5 Ma, indicating that the andesites were formed at the middle-late stages of Early Cretaceous. Lithogeochemical characteristics show that the Nb-rich basalts in Yema area are characterized by obvious enrichment of Nb and Al_2 O_3, with the values of Nb being 10.5×10~(-6)~11.1×10~(-6) and Al_2 O_3 being 17.63%~17.96%, averaging 17.74 %, suggesting Nb-rich, high-alumina basalt of calc alkaline series. The andesites belong to high-K calc alkaline series. All the volcanic rocks in Yama area are characterized by enriched LREE and relatively depleted HREE. The total REE of basalts are 119.20×10~(-6)~120.49×10~(-6), with(La/Yb)_N from 5.17 to 5.53, and the ∑REE of andesites are179.97×10~(-6)~184.75×10~(-6) and their(La/Yb)Nrange from 13.83 to 15.12. On primitive mantle-normalized trace element diagrams,the basalts and andesite display different degrees of enrichment of LIFEs(e.g., Rb, U, K), relative depletion of HFSE(Nb, Ta, Ti)with high content of Sr, Nb, Zr but low content of Cr, Ni, similar to features of island arc rocks. The magma source region was mainly influenced by the subduction fluid and underwent different degrees of fractionation crystallization of femic minerals with uplifting.A comprehensive study shows that the basalt and andesite of Qushenla Formation in Yema area were probably formed in the backarc tectonic rocks, which might have been the direct magma response to slab break-off caused by asthenosphere upwelling back-arcextension during the southward subduction of Bangong Co-Nujiang Tethyan Ocean at the late stage of Early Cretaceous.
引文
[1]潘桂堂,莫宣学,侯增谦,等.冈底斯造山带的时空结构及演化[J].岩石学报,2006,22(3):521-533.
    [2]耿全如,潘桂堂,王立全,等.班公湖-怒江、羌塘地块特提斯演化与成矿地质背景[J].地质通报,2011,30(8):1261-1274.
    [3]朱弟成,潘桂堂,莫宣学,等.冈底斯中北部晚侏罗世-早白垩世地球动力学环境:火山岩约束[J].岩石学报,2006,22(3):534-546.
    [4]朱弟成,莫宣学,赵志丹,等.西藏冈底斯带措勤地区则弄群火山岩锆石U-Pb年代学格架及构造意义[J].岩石学报,2008,24(3):401-412.
    [5]李金祥,李光明,秦克章,等.班公湖带多不杂富金斑岩铜矿床斑岩-火山岩的地球化学特征与时代:对成矿构造背景的制约[J].岩石学报,2008,24(3):531-543.
    [6]康志强,许继峰,王保弟,等.拉萨地块北部白垩纪多尼组火山岩的地球化学:形成的构造环境[J].地球科学-中国地质大学学报,2009,34(1):89-104.
    [7]康志强,许继峰,王保弟,等.拉萨地块北部去申拉组火山岩:班公湖-怒江特提斯洋南向俯冲的产物?[J].岩石学报,2010,26(10):3106-16.
    [8]Sui Q L,Wang Q,Zhu D C,et al.Compositional diversity of ca.110Ma magmatism in the northern Lhasa Terrane,Tibet:Implications for the magmatic origin and crustal growth in a continentcontinent collision zone[J].Lithos,2013,168:144-159.
    [9]Zhu D C,Li S M,Cawood P A,et al.Assembly of the Lhasa and Qiangtang terranes in central Tibet by divergent double subduction[J].Lithos,2015,245:7-17.
    [10]Zhang K,Xia B,Wang G,et al.Early Cretaceous stratigraphy,depositional environments,sandstone provenance,and tectonic setting of central Tibet,western China[J].Geological Society of America Bulletin,2004,116(9):1202-1222.
    [11]Liu Y S,Hu Z C,Cao S,et al.In Situ Analysis of Major and Trace Elments of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard[J].Chemical Geology,2008,257(1/2):34-43.
    [12]Hoskin P W,Black L P.Metamorphic zircon formation by solid,state recrystallization of protolith igneous zircon[J].Journal of Metamorphic Geology,2000,18(4):423-439.
    [13]李伟.西藏改则地区去申拉组火山岩地球化学特征及锆石年代学制约[D].中国地质大学(北京)硕士学位论文,2012.
    [14]于枫.西藏冈底斯盐湖南部花岗岩的岩石学、地球化学与成因[D].中国地质大学(北京)硕士学位论文,2012.
    [15]马义明.拉萨地块早白垩世火山岩古地磁学和年代学研究对亚洲南缘的古地理限制[D].中国地质大学(北京)硕士学位论文,2013.
    [16]隋清霖.西藏拉萨地块盐湖地区早白垩世岩浆岩年代学、岩石成因及构造意义[D].中国地质大学(北京)硕士学位论文,2014.
    [17]Wilson M.Igneous Petrogenesis[M].London:Unwin Hyman,1989:101-149.
    [18]Winchester J A,Floyd P A.Geochemical discrimination of different magma series and their differentiation products using immobile elements[J].Chemical Geology,1977,20:325-343.
    [19]Peccerillo A,Taylor S R.Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area,northern Turkey[J].Contributions to Mineralogy and Petrology,1976,58(1):63-81.
    [20]Streckeisen A,Bonin B,Le Bas M J,et al.Igneous Rocks:a classification and glossary of terms[M].Oxford:Cambridge University Press,2005:1-256.
    [21]Sun S S,McDonough W F.Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes[J].Geological Society,London,Special Publications,1989,42(1):313-345.
    [22]Crawford A J,Falloon T J,Eggins S.The origin of island arc high alumina basalts[J].Contributions to Mineralogy and Petrology,1987,97:417-430.
    [23]徐夕生,邱检生.火成岩岩石学[M].北京:科学出版社,2010:1-346.
    [24]Sajona F G,Maury R C,Bellon H,et al.Initiation of subduction and the generation of slab melt in western and eastern Mindanao Philippines[J].Geology,1993,21(11):1007-1010.
    [25]Sajona F G,Maury R C,Bellon H,et al.High field strength element enrichment of Pliocene-Pleistocene island arc basalts,Zamrboanga Peninsula,western Mindanao(Philippines)[J].Journal of Petrology,1996,37(3):693-726.
    [26]Zhang H R,Yang T N,Hou Z Q,et al.Evonian Nb-enriched basalts and andesites of north-central Tibet:Evidence for the early subduction of the Paleo-Tethyan oceanic crust beneath the North Qiangtang Block[J].Tectonophysics,2016,682:96-107.
    [27]Mao Q G,Xiao W J,Fang T H,et al.Late Ordovician to early Devonian adakites and Nb-enriched basalts in the Liuyuan area,Beishan,NW China:Implications for early Paleozoic slab-melting and crustal growth in the southern Altaids[J].Gondwana Research,2012,22:534-553.
    [28]Wang Q,Wyman D A,Zhao Z H,et al.Petrogenesis of Carboniferous adakites and Nb-enriched arc basalts in the Alataw area,northern Tianshan Range(western China):Implications for Phanerozoic crustal growth in the Central Asia orogenic belt[J].Chemical Geology,2007,236:42-64.
    [29]李永军,沈锐,王冉,等.新疆西准噶尔巴尔努克早石炭世富Nb岛弧玄武岩的发现及其地质意义[J].岩石学报,2014,30(12):3501-3511.
    [30]Defant M J,Xu J F,Kepezhinskas P.Adakite:some variations on a theme[J].Acta Petrologica Sinica,2002,18:129-142.
    [31]Kepezhinskas P K,Defant M J,Drummond M S.Progressive enrichment of island arc mantle by melt-peridotite interaction inferred from Kamchatka xenoliths[J].Geochimica et Cosmochimica Acta,1996,60:1217-1229.
    [32]Rogers R D,Kárason H,Van der Hilst R D.Epeirogenic uplift above a detached slab in northern Central America[J].Geology,2002,30(11):1031-1034.
    [33]Lassiter J C,DePaolo D J.Plume/lithosphere interaction in the generation of continental and oceanic flood basalts:chemical and isotopic constraints[J].Geophysical Monograph-American Geophysical Union,1997,100(1):335-356.
    [34]Tuner S,Arnaud N,Liu J.Post-collisional,shoshonitic volcanism on the Tibetan plateau:implications for convective thinning of the lithosphere and the source of ocean island basalts[J].Journal of Petrology,1996,37:45-71.
    [35]Frey F A,Green D H,Roy S D.Integrated models of basalt petrogenesis:a study of quartz tholeiites to olivine melilitites from South Eastern Australia utilizing geochemical and experimental petrological data[J].Journal of Petrology,1978,19(3):463-513.
    [36]Jung S,Masberg P.Major-and trace-element systematics and isotope geochemistry of Cenozoic mafic volcanic rocks from the Vogelsberg(central Germany):constraints on the origin of continental alkaline and tholeiitic basalts and their mantle sources[J].Journal of Volcanology and Geothermal Research,1998,86(1):151-177.
    [37]Pearce J A,Peate D W.Tectonic implications of the composition of volcanic arc magmas[J].Annual Review of Earth and Planetary Sciences,1995,23(1):251-285.
    [38]Scaillet B,Prouteau G.Oceanic slab melting and mantle metasomatism[J].Science Progress,2001,84:335-354.
    [39]La Flèche M R,CamiréG,Jenner G A.Geochemistry of postAcadian,Carboniferous continental intraplate basalts from the Maritimes Basin,Magdalen Islands,Québec,Canada[J].Chemical Geology,1998,149:115-136.
    [40]Woodhead J D,Eggins S M,Johnson R W.Magma genesis in the New Britain island arc:further insights into melting and mass transfer processes[J].Journal of Petrology,1998,39(9):1641-1668.
    [41]Floyd P A,Kelling G,G?k?en S L,et al.Geochemistry and tectonic environment of basaltic rocks from the Misis ophiolitic mélange,south Turkey[J].Chemical Geology,1991,89(3/4):263-280.
    [42]Sandeman H A,Hanmer S,Tella S,et al.Petrogenesis of Neoarchaean volcanic rocks of the MacQuoid supracrustal belt:a backarc setting for the northwestern Hearne subdomain,western Churchill Province,Canada[J].Precambrian Research,2006,144(1):140-165.
    [43]Taylor B.Martinez F.Back-arc basin basalt systematics[J].Earth and Planetary Science Letters,2003,210(3):481-497.
    [44]Gamble J A,Wright I C,Woodhead J D,et al.Arc and backarc geochemistry in the southern Kermadec arc-Ngatoro Basin and off shore Taupo Volcanic Zone,SW Pacific[J].Geological Society,London,Special Publications,1994,81:193-212.
    [45]Woodhead J D,Eggins S M,Gamble J A.High field strength and transition element systematics in island arc and back-arc basin basalts:Evidence for multi-phase melt extraction and a depleted mantle wedge[J].Earth and Planetary Science Letters,1993,114:491-504.
    [46]Martin H,Smithies R H,Rapp R,et al.An overview of adakite,tonalite-trondhjemite-granodiorite(TTG),and sanukitoid:Relationships and some implications for crustal evolution[J].Lithos,2005,79(1/2):1-24.
    [47]Gribble R F,Stern R J,Bloomer S H,et al.MORB mantle and subduction components interact to generate basalts in the southern Mariana Trough back-arc basin[J].Geochimica et Cosmochimica Acta,1996,60:2153-2166.
    [48]Wang Y J,Zhao G C,Fan W M,et al.LA-ICP-MS U-Pb zircon geochronology and geochemistry of Paleoproterozoic mafic dykes from western Shandong Province:Implications for back-arc basin magmatism in the Eastern Block,North China Craton[J].Precambrian Research,2007,154:107-124.
    [49]Fan W M,Wang Y J,Zhang A M,et al.Permian arc-back-arc basin development along the Ailaoshan tectonic zone:Geochemical,isotopic and geochronological evidence from the Mojiang volcanic rocks,Southwest China[J].Lithos,2010,119(3):553-568.
    [50]Zhu D C,Mo X X,Niu Y,et al.Geochemical investigation of Early Cretaceous igneous rocks along an east-west traverse throughout the central Lhasa Terrane,Tibet[J].Chemical Geology,2009,268:298-312.
    [51]Zhu D C,Zhao Z D,Niu Y,et al.The Lhasa Terrane:record of a microcontinent and its histories of drift and growth[J].Earth and Planetary Science Letters,2011,301:241-255.
    [52]Shervais J W.Ti-V plots and the petrogenesis of modern and ophiolitic lavas[J].Earth and Planetary Science Letters,1982,59(1):101-118.
    [53]Kapp P,Yin A,Harrison T M,et al.Cretaceous-Tertiary shortening,basin development,and volcanism in central Tibet[J].Geological Society of America Bulletin,2005,117:865-878.
    [54]Kapp P,De Celles P G,Gehrels G E,et al.Geological records of the Lhasa-Qiangtang and Indo-Asian collisions in the Nima area of central Tibet[J].Geological Society of America Bulletin,2007,119:917-932.
    [55]Decelles P G,Kapp P,Ding L,et al.Late Cretaceous to middle Tertiary basin evolution in the central Tibetan Plateau:Changing environments in response to tectonic partitioning,aridification,and regional elevation gain[J].Geological Society of American Bulletin,2007,119:654-680.
    [56]Coulon C,Maluski H,Bollinger C,et al.Mesozoic and Cenozoic volcanic rocks from central and southern Tibet:39Ar-40Ar dating,petrological characteristics and geodynamical significance[J].Earth and Planetary Science Letters,1986,79:281-302.
    [57]马国林,岳雅慧.西藏拉萨地块北部白垩纪火山岩及其对冈底斯岛弧构造演化的制约[J].岩石矿物学杂志,2010,29(5):525-538.
    [58]Gutscher M A,Maury R,Eissen J P,et al.Can slab melting be caused by flat subduction?[J].Geology,2000,28(6):535-538.
    [59]Ji W Q,Wu F Y,Chung S L,et al.Zircon U-Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith,southern Tibet[J].Chemical Geology,2009,262:229-245.
    [60]陈越,朱弟成,赵志丹,等.西藏北冈底斯巴木错安山岩的年代学、地球化学及岩石成因[J].岩石学报,2010,26(7):2193-2206.
    [61]张亮亮,朱弟成,赵志丹,等.西藏申扎早白垩世花岗岩类:板片断离的证据[J].岩石学报,2011,27(7):1938-1948.
    [62]Von Blanckenburg F,Davis J H.Slab break off:A model for syncollisional magmatism and tectonics in the Alps[J].Tectonics,1995,14:120-131.(1)
    (1)四川省地质调查院.革吉县幅1∶25万地质图. 2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700