用户名: 密码: 验证码:
西昆仑东部晚三叠世高镁闪长岩的成因及其地质意义
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Petrogenesis of Triassic high-Mg diorites in western Kunlun orogen and its tectonic implication
  • 作者:魏小鹏 ; 王核 ; 张晓宇 ; 董瑞 ; 朱世波 ; 邢春辉 ; 李沛 ; 闫庆贺 ; 周楷麟
  • 英文作者:WEI Xiao-peng;WANG He;ZHANG Xiao-yu;DONG Rui;ZHU Shi-bo;XING Chun-hui;LI Pei;YAN Qing-he;ZHOU Kai-lin;Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemisty, Chinese Academy of Sciences;University of Chinese Academy of Sciences;Engineering Technology Branch Company, CNOOC Energy Development Co., Ltd;National 305 Project Office;
  • 关键词:西昆仑造山带 ; 古特提斯洋 ; 晚三叠世 ; 高镁闪长岩
  • 英文关键词:western Kunlun orogen;;Paleo-Tethys Ocean;;Late Triassic;;high-Mg diorite
  • 中文刊名:DQHX
  • 英文刊名:Geochimica
  • 机构:中国科学院广州地球化学研究所矿物学与成矿学重点实验室;中国科学院大学;中海油能源发展股份有限公司工程技术分公司;国家305项目办公室;
  • 出版日期:2018-08-02 12:15
  • 出版单位:地球化学
  • 年:2018
  • 期:v.47
  • 基金:新疆维吾尔自治区重大科技专项(2018A03004-2);; “十二五”国家科技支撑计划(2015BAB05B03-02);; 中国科学院广州地球化学研究所一三五项目(135TP201601)
  • 语种:中文;
  • 页:DQHX201804005
  • 页数:17
  • CN:04
  • ISSN:44-1398/P
  • 分类号:41-57
摘要
三叠纪是西昆仑造山带地质演化的重要时期,本文首次发现的两个晚三叠世高镁闪长岩岩体对于讨论该造山带中晚三叠世构造-岩浆活动和古特提斯洋构造演化有重要意义。本文对西昆仑东部阿克萨依闪长岩(AKSY)和俘虏沟石英闪长岩(FLYT)进行了岩石学、元素和同位素地球化学及同位素年代学综合研究。阿克萨依和俘虏沟石英闪长岩的锆石U-Pb年龄分别为(216.7±1.8)Ma和(213.7±2.0)Ma,为晚三叠世岩浆活动的产物。这两个岩体有较高的Mg O含量(分别为4.66%~5.01%和3.37%~3.52%)和Mg#值(分别为59.6~60.3和50.2~51.5),显示出与赞岐岩相似的地球化学特征,暗示它们是地幔部分熔融的产物。阿克萨依闪长岩和俘虏沟石英闪长岩又都明显富集Rb、Ba、Th、U等大离子亲石元素(LILE),亏损Nb、Ta、Ti、Zr等高场强元素,表明它们的形成过程中有陆壳物质加入。元素和同位素地球化学特征显示,阿克萨依闪长岩和俘虏沟石英闪长岩都是由俯冲流体交代的富集岩石圈地幔部分熔融形成,地幔源区的富集程度、部分熔融程度和熔融深度不同导致两者地球化学特征存在明显差异。鉴于这两个由交代地幔部分熔融形成的闪长岩出露于麻扎-康西瓦缝合带的南侧,以及西昆仑造山带中晚三叠世花岗岩主要分布在缝合带南侧的甜水海地体中,本文认为西昆仑古特提斯洋可能曾向南俯冲于甜水海地体之下。
        This paper presents the first detailed LA-ICP-MS zircon U-Pb chronology, major and trace element analysis, and Sr-Nd-Hf isotope geochemical analysis of Late Triassic high-Mg diorites(AKSY and FLYT) in the eastern part of the western Kunlun orogen. LA-ICP-MS zircon U-Pb dating shows that the AKSY pluton was emplaced at(216.7±1.8) Ma, and the FLYT pluton was emplaced at(213.7±2.0) Ma. The AKSY diorite have SiO_2 contents of 55.93% to 57.9% and MgO contents of 4.66% to 5.01%, with high Na_2O/K_2O ratios(1.75–2.49), a high Mg# value(59.6–60.3), initial ~(87) Sr/~(86) Sr ratios of 0.7073–0.7074, eNd(t) values of –1.7 to –2.2, and εHf(t)(in-situ zircon) values of 4.3–6.9. They are enriched in large ion lithophile elements(LILE)(i.e., Rb, Ba, Th, and U) and depleted in high field strength elements(i.e., Nb, Ta, Ti, and Zr); they also have relatively low Sr/Y and La/Yb ratios. Compare with the AKSY diorites, the FLYT quartz diorites have higher SiO_2(58.43%~59.79%), K_2O(2.26%~2.57%), LILE, and light rare-earth element contents, and lower MgO(3.37%–3.52%) contents and Mg#(50.2–51.5) values, with a more enriched isotope composition((87 Sr/86 Sr)i = 0.7079–0.7080, eNd(t) = –5.4, and εHf(t) = –2.1 to –4.6). All of these elemental and isotopic geochemical feature indicate that the AKSY diorites and the FLYT quartz diorites were both derived from partial melting of mantle wedge peridotite, which was fluxed by fluids or melts liberated from the subducting slab, and the differences in the degree of mantle enrichment, degree of partial melting, and depth of the partial melting result in the different elemental and isotope geochemical characteristics of the two plutons. The two diorites and most of the Triassic granitoids in the western Kunlun orogen are widespread south of the Mazha-Kangxiwa suture, indicating that the Paleo-Tethys Ocean may have undergone southward subduction beneath the Tianshuihai terrane.
引文
[1]Mattern F,Schneider W.Suturing of the Proto-and PaleoTethys oceans in the western Kunlun(Xinjiang,China)[J].J Asian Earth Sci,2000,18(6):637–650.
    [2]Wang Z H.Tectonic evolution of the western kunlun orogenic belt,western china[J].J Asian Earth Sci,2004,24(2):153–161.
    [3]Xiao W J,Windley B F,Hao J,Li J L.Arc-ophiolite obduction in the western kunlun range(China):Implications for the Palaeozoic evolution of central Asia[J].J Geol Soc,2002,159(5):517–528.
    [4]Pan Y S,Zhou W M,Xu R H,Xu R H,Wang D A,Zhang Y Q,Xie Y W,Chen T E,Luo H.Geological characteristics and evolution of the kunlun mountains region during the Early Paleozoic[J].Sci China(D),1996,39(4):337–347.
    [5]Matte P,Tapponnier P,Arnaud N,Bourjot L,Avouac J P,Vidal P,Qing L,Pan Y S,Yi W.Tectonics of Western Tibet,between the Tarim and the Indus[J].Earth Planet Sci Lett,1996,142(3/4):311–330.
    [6]Liu Z,Jiang Y H,Jia R Y,Peng Z,Qing Z.Origin of Late Triassic high-K calc-alkaline granitoids and their potassic microgranular enclaves from the western Tibet plateau,Northwest China:Implications for paleo-tethys evolution[J].Gondw Res,2015,27:326–341.
    [7]Jiang Y H,Jia R Y,Liu Z,Liao S Y,Zhao P,Zhou Q.Origin of Middle Triassic high-K calc-alkaline granitoids and their potassic microgranular enclaves from the western Kunlun orogen,northwest China:A record of the closure of paleotethys[J].Lithos,2013,156:13–30.
    [8]李三忠,赵淑娟,李玺瑶,曹花花,刘鑫,郭晓玉,肖文交,赖绍聪,闫臻,李宗会,于胜尧,兰浩圆.东亚原特提斯洋(Ⅰ):南北边界和俯冲极性[J].岩石学报,2016,32(9):2609–2627.Li San-zhong,Zhao Shu-juan,Li Xi-yao,Cao Hua-hua,Liu Xin,Guo Xiao-yu,Xiao Wen-jiao,Lai Shao-cong,Yan Zhen,Li Zong-hui,Yu Sheng-yao,Lan Hao-yuan.Proto-Tehtys Ocean in East Asia(I):Northern and southern border faults and subduction polarity[J].Acta Petrol Sinica,2016,32(9):2609–2627(in Chinese with English abstract).
    [9]Zhang Y,Niu Y L,Hu Y,Liu J J,Ye L,Kong J J,Duan Meng.The syncollisional granitoid magmatism and continental crust growth in the west Kunlun orogen,China—Evidence from geochronology and geochemistry of the arkarz pluton[J].Lithos,2016,245:191–204.
    [10]魏小鹏,王核,胡军,慕生禄,丘增旺,闫庆贺,李沛.西昆仑大红柳滩二云母花岗岩地球化学和地质年代学研究及其地质意义[J].地球化学,2017,46(1):66–80.Wei Xiao-peng,Wang He,Hu Jun,Mu Sheng-lu,Qiu Zengwang,Yan Qing-he,Li Pei.Geochemistry and geochronology of Dahongliutan two-mica granite pluton,western Kunlun orogen:Implication for tectonic[J].Geochimica,2017,46(1):66–80(in Chinese with English abstract).
    [11]乔耿彪,张汉德,伍跃中,金谋顺,杜玮,赵晓健,陈登辉.西昆仑大红柳滩岩体地质和地球化学特征及对岩石成因的制约[J].地质学报,2015,89(7):1180–1194.Qiao Geng-biao,Zhang Han-de,Wu Yue-zhong,Jin Mou-shun,Du Wei,Zhao Xiao-jian,Chen Deng-hui.Petrogenesis of the Dahongliutan monzogranite in western Kunlun:Constraints from SHRIMP zircon U-Pb geochronology and geochemical characteristics[J].Acta Geol Sinica,2015,89(7):1180–1194(in Chinese with English abstract).
    [12]计文化,韩芳林,王炬川,张俊量.西昆仑于田南部苏巴什蛇绿混杂岩的组成、地球化学特征及地质意义[J].地质通报,2004,23(12):1196–1201.Ji Wen-hua,Han Fang-lin,Wang Ju-chuan,Zhang Jun-liang.Compositon and geochemistry of the Subashi ophiolitic mé-lange in the West Kunlun and its geological significance[J].Geol Bull China,2004,23(12):1196–1201(in Chinese with English abstract).
    [13]Hu J,Wang H,Huang C Y,Tong L X,Mu S L,Qiu Z W.Geological characteristics and age of the dahongliutan Fe-ore deposit in the western Kunlun orogenic belt,Xinjiang,northwestern China[J].J Asian Earth Sci,2016,116:1–25.
    [14]Ludwig K R.User’s manual for Isoplot 3.0:A geochronological toolkit for Microsoft Excel[J].Berkeley Geochronol Cent Spec Pub,2003,4:1–71.
    [15]Griffin W L,Wang X,Jackson S E,Pearson N J,O’Reilly S Y,Xu X S,Zhou X M.Zircon chemistry and magma mixing,SE China:In-situ analysis of Hf isotopes,Tonglu and Pingtan igneous complexes[J].Lithos,2002,61:237–269.
    [16]Li X H,Liu D Y,Sun M,Li W X,Liang X R,Liu Y.Precise Sm-Nd and U-Pb isotopic dating of the supergiant Shizhuyuan polymetallic deposit and its host granite,SE China[J].Geol Mag,2004,141:225–231.
    [17]Wu Y B,Zheng Y F.Genesis of zircon and its constraints on interpretation of U-Pb age[J].Chinese Sci Bull,2004,49(15):1554–1569.
    [18]Wu F Y,Li X H,Zheng Y F,Gao S.Lu-Hf isotopic systematics and their applications in petrology[J].Acta Petrol Sinica,2007,23(2):185–220.
    [19]Kamei A,Owada M,Nagao T,Shiraki K.High-Mg diorites derived from sanukitic HMA magmas,Kyushu Island,southwest Japan arc:Evidence from clinopyroxene and whole rock compositions[J].Lithos,2004,75(3/4):359–371.
    [20]Yin J Y,Yuan C,Sun M,Shiraki K.Late Carboniferous highMg dioritic dikes in western Junggar,NW China:Geochemical features,petrogenesis and tectonic implications[J].Gondw Res,2010,17:145–152.
    [21]Rickwood P C.Boundary lines within petrologic diagrams which use oxides of major and minor elements[J].Lithos,1989,22:247–263.
    [22]Mc Carron J J,Smellie J L.Tectonic implications of fore-arc magmatism and generation of high-magnesian andesites:Alexander island,Antarctica[J].J Geol Soc,1998,155:269–280.
    [23]Rapp R P,Watson E B.Dehydration melting of metabasalt at8-32-kbar:Implications for continental growth and crust-mantle recycling[J].J Petrol,1995,36:891–931.
    [24]Sisson T W,Ratajeski K,Hankins W B,Glazner A F.Voluminous granitic magmas from common basaltic sources[J].Contrib Mineral Petrol,2005,148:635–661.
    [25]Douce A E P,Johnston A D.Phase-equilibria and melt productivity in the pelitic system:Implications for the origin of peraluminous granitoids and aluminous granulites[J].Contrib Mineral Petrol,1991,107:202–218.
    [26]Sun S-s,Mc Donough W F.Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes[J].Geol Soc London Spec Pub,1989,42:313–345.
    [27]Martin H.Adakitic magmas:Modern analogues of archaean granitoids[J].Lithos,1999,46:411–429.
    [28]康磊,校培喜,高晓峰,奚仁刚,杨再朝.西昆仑西段晚古生代-中生代花岗质岩浆作用及构造演化过程[J].中国地质,2015,42(3):533–552.Kang Lei,Xiao Pei-xi,Gao Xiao-feng,Xi Ren-gang,Yang Zai-chao.Neopaleozoic and Mesozoic granitoid magmatism and tectonic evolution of the western West Kunlun Mountains[J].Geol China,2015,42(3):533–552(in Chinese with English abstract).
    [29]Annen C,Blundy J D,Sparks R S J.The genesis of intermediate and silicic magmas in deep crustal hot zones[J].J Petrol,2006,47:505–539.
    [30]Parman S W,Grove T L.Harzburgite melting with and without H2O:Experimental data and predictive modeling[J].J Geophys Res Solid Earth,2004,109:1–20.
    [31]Grove T L,Donnelly Nolan J M,Housh T.Magmatic processes that generated the rhyolite of glass mountain,medicine lake volcano,N California[J].Contrib Mineral Petrol,1997,127:205–223.
    [32]Reubi O,Blundy J.A dearth of intermediate melts at subduction zone volcanoes and the petrogenesis of arc andesites[J].Nature,2009,461(7268):1269–1273.
    [33]Jackson M D,Cheadle M J,Atherton M P.Quantitative modeling of granitic melt generation and segregation in the continental crust[J].J Geophys Res Solid Earth,2003,108:1–21.
    [34]Stern R A,Hanson G N,Shirey S B.Petrogenesis of mantlederived,LILE-enriched Archean monzodiorites and trachyandesites(sanukitoids)in southwestern Superior Province[J].Can J Earth Sci,1989,26(9):1688–1712.
    [35]夏林圻,夏祖春,徐学义,李向民,马中平.利用地球化学方法判别大陆玄武岩和岛弧玄武岩[J].岩石矿物学杂志,2007,26(1):77–89.Xia Lin-qi,Xia Zu-chun,Xu Xue-yi,Li Xiang-min,Ma Zhong-ping.The discrimination between continental basalt and island arc basalt based on geochemical method[J].Acta Petrol Mineral,2007,26(1):77–89(in Chinese with English abstract).
    [36]牛贺才,单强,罗勇,杨武斌,周昌平,廖思平,于学元.西天山玉希莫勒盖达坂石英闪长岩的微量元素地球化学及同位素年代学研究[J].岩石学报,2010,26(10):2935–2945.Niu He-cai,Shan Qiang,Luo Yong,Yang Wu-bin,Zhou Chang-ping,Liao Si-ping,Yu Xue-yuan.Geochronological and geochemical studies on quartz diorite in Yuximolegai Daban,West Tianshan and its tectonic implication[J].Acta Petrol Sinica,2010,26(10):2935–2945(in Chinese with English abstract).
    [37]唐冬梅,秦克章,孙赫,苏本勋,肖庆华,程松林,李军.天宇铜镍矿床的岩相学、锆石U-Pb年代学、地球化学特征:对东疆镁铁-超镁铁质岩体源区和成因的制约[J].岩石学报,2009,25(4):817–831.Tang Dong-mei,Qin Ke-zhang,Sun He,Su Ben-xun,Xiao Qing-hua,Cheng Song-lin,Li Jun.Lithological,chronological and geochemical characteristics of Tianyu Cu-Ni deposit:Constraints on source and genesis of mafic-ultramafic intrusions in eastern Xinjiang[J].Acta Petrol Sinica,25(4):817–831(in Chinese with English abstract).
    [38]Viccaro M,Cristofolini R.Nature of mantle heterogeneity and its role in the short-term geochemical and volcanological evolution of Mt.Etna(Italy)[J].Lithos,2008,105:272–288.
    [39]潘裕生.喀喇昆仑山-昆仑山地区地质演化[M].北京:科学出版社,2000:513–515.Pan Yu-sheng.Geological Evolution of the Karakorum and Kunlun Mountains[M].Beijing:Science Press,2000:513–515(in Chinese).
    [40]Yang W Q,Liu L A,Cao Y T,Wang C,He S P,Li R S,Zhu X H.Geochronological evidence of Indosinian(high-pressure)metamorphic event and its tectonic significance in Taxkorgan area of the western Kunlun Mountains,NW China[J].Sci China Earth Sci,2010,53:1445–1459.
    [41]杨文强.西昆仑塔县-康西瓦构造带印支期变质、岩浆作用及布伦阔勒岩群的形成时代[D].西安:西北大学,2013.Yang Wen-qiang.The Indosinian metamorphism,magmatism and formation age of Bulunkuole rock group in Taxkorgan-Kangxiwar tectonic belt,Western Kunlun[D].Xi’an:Northwest University,2013(in Chinese with English abstract).
    [42]Xiao W J,Windley B F,Liu D Y,Jian P,Liu C Z,Yuan C,Sun M.Accretionary tectonics of the Western Kunlun Orogen,China:A Paleozoic-Early Mesozoic,long-lived active continental margin with implications for the growth of southern Eurasia[J].J Geol,2005,113(6):687–705.
    [43]Bi H,Wang Z G,Wang Y L,Zhu X Q.History of tectono-magmatic evolution in the Western Kunlun Orogen[J].Sci China(D),1999,42(6):604–619.
    1)陕西省地质调查院,1:25万康西瓦幅区域地质调查成果报告,2006。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700