用户名: 密码: 验证码:
施氮量对石灰性潮土锌吸附和解吸特性的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The effect of nitrogen application on adsorption and desorption characteristics of zinc in calcareous fluvo-aquic soil
  • 作者:聂兆君 ; 秦世玉 ; 王媛 ; 刘红恩 ; 赵鹏
  • 英文作者:NIE Zhaojun;QIN Shiyu;WANG Yuan;LIU Hong'en;ZHAO Peng;College of Resources and Environment, Henan Agricultural University;
  • 关键词:石灰性潮土 ; 施氮 ; 锌吸附特性 ; 锌解吸特性
  • 英文关键词:calcareous fluvo-aquic soil;;nitrogen application;;zinc adsorption characteristics;;zinc desorption characteristics
  • 中文刊名:NNXB
  • 英文刊名:Journal of Henan Agricultural University
  • 机构:河南农业大学资源与环境学院;
  • 出版日期:2019-02-15
  • 出版单位:河南农业大学学报
  • 年:2019
  • 期:v.53;No.211
  • 基金:国家自然科学基金项目(41501311);; 河南省高等学校重点科研项目计划(17A210002);; 国家重点研发计划项目(2017YFD0201700);; 河南教育厅基础研究专项(19zx007)
  • 语种:中文;
  • 页:NNXB201901020
  • 页数:7
  • CN:01
  • ISSN:41-1112/S
  • 分类号:137-143
摘要
采用吸附等温线法,设置8个锌水平(0、0.5、1、5、10、50、100、1 000 mg·L~(-1))和3个氮水平(0、20、40 mg·L~(-1)),研究不同施氮量对石灰性潮土锌的吸附、解吸动力学特性的影响。结果表明,土壤锌的吸附曲线在3个施氮处理下与Langmuir等温吸附方程都吻合,其决定系数R~2分别为0.967 8、0.944 7和0.992 7。而土壤锌的吸附曲线采用Freundlich等温吸附方程拟合,R~2分别为0.939 1、0.934 1和0.761 0,其适应性随着施氮水平的增加而降低,在N_(40)处理下不适宜采用Freundlich方程拟合。3个施氮水平下,随着平衡液锌质量浓度的增加,土壤锌的吸附量逐渐增加,在Zn_(1000)水平下达到最大值(1 232~1 693 mg·kg~(-1)),而锌吸附率则先增加后降低,在Zn_(10)水平下达到最大值(98.0%~99.1%)。3个施氮处理下,土壤锌的最大吸附量Q_m分别为1 662.4、1 513.2和1 262.1 mg·kg~(-1),吸附强度因子K_L分别为0.069 1、0.053 5和0.041 6 L·mg~(-1),表明与不施氮(N_0)处理相比,2个施氮处理(N_(20)和N_(40))的Q_m和K_L降低了。同时,N_(20)处理下的吸附平衡常数K_F(244.6 (mg·kg~(-1))·(L·mg~(-1))~(1/n))和n(3.52)也低于N_0处理下的K_F(276.7 (mg·kg~(-1))·(L·mg~(-1))~(1/n))和n(3.56)。N_(20)和N_(40)处理也降低了不同施锌水平下的吸附量和吸附率。3个施氮水平下,土壤锌的解吸量和解吸率均随着平衡液锌质量浓度的增加呈先增加后降低再增加的趋势,最大解吸量(472~553 mg·kg~(-1))和解吸率(32.0%~44.5%)均出现在Zn_(1000)水平下。N_(20)和N_(40)处理对土壤锌的解吸量和解吸率的影响取决于施锌水平。3个施氮水平下,土壤对锌的解吸量均随吸附量的增大而增加,且锌解吸量小于锌吸附量。因此,施氮可以抑制土壤对锌的吸附,影响土壤对锌的解吸,进而提高土壤锌的有效性。
        Using adsorption isotherm method, eight zinc(Zn) levels(0, 0.5, 1, 5, 10, 50, 100 and 1 000 mg·L~(-1)) and three nitrogen(N) levels(0, 20 and 40 mg·L~(-1)) were set up to study the effect of N application levels on the adsorption and desorption kinetics of Zn in calcareous fluvo-aquic soil. The results showed that the adsorption curve of soil Zn was consistent with the Langmuir isothermal adsorption equation at three levels of N application, and the determination coefficients R~2 of the tested soil were 0.967 8, 0.944 7 and 0.992 7 respectively. While, R~2 of Freundlich isothermal adsorption equation fitting for the adsorption curve of soil Zn were 0.939 1, 0.934 1 and 0.761 0 respectively, the adaptability of Freundlich isothermal adsorption equation was decreased with the increasing N application levels, and the Zn adsorption did not fit the Freundlich equation at N_(40) treatment. At the three levels of N application, the adsorption amount of Zn was increased gradually, with the highest value at Zn_(1000) treatment(1 232~1 693 mg·kg~(-1)), and the adsorption rate of Zn was increased first and then decreased with the increase of Zn concentration in the equilibrium solution, with the highest value at Zn_(10) treatment(98.0%~99.1%). In the three treatments of N application, the maximum adsorption(Q_m) of soil Zn was 1 662.4, 1 513.2 and 1 262.1 mg·kg~(-1), and the adsorption intensity factor(K_L) was 0.069 1, 0.053 5 and 0.041 6 L·mg~(-1) respectively. Compared with N_0 treatment, the results showed that N_(20) and N_(40) treatment reduced Q_m and K_L. Meanwhile, the adsorption equilibrium constant K_F(244.6(mg·kg~(-1))·(L·mg~(-1))~(1/n)) and n(3.52) in N_(20) treatment was lower than K_F(276.7(mg·kg~(-1))·(L·mg~(-1)1/n)) and n(3.56) in N_0 treatment. N_(20) and N_(40) treatment also decreased the adsorption amount and rate of Zn at different Zn application levels. At the three N application levels, the desorption amount and rate of Zn was increased first, again decreased and again increased with the increase of Zn concentration in the equilibrium solution, with the highest value of desorption amount(472~553 mg·kg~(-1)) and desorption rate(32.0%~44.5%) at Zn_(1000) treatment. The effects of N_(20) and N_(40) treatment on the desorption amount and rate of Zn were depended on the Zn application levels. At each N application level, the desorption amount of Zn was increased with the increase of the adsorption amount of Zn, and the desorption amount was lower than the adsorption amount of Zn. Therefore, N application could inhibit the Zn adsorption on soil, influence the Zn desorption from soil, and thus increase the Zn availability in soil.
引文
[1] 刘铮. 我国土壤中锌含量的分布规律[J]. 中国农业科学, 1994, 27(1): 30-37.
    [2] CHANDLER W H. Zinc as a nutrient for plants[J]. Botanical Gazette, 1937, 98(4): 625-646.
    [3] KABIR A H, SWARAZ A M, STANGOULIS J. Zinc-deficiency resistance and biofortification in plants[J]. Journal of Plant Nutrition and Soil Science, 2014, 177(3): 311-319.
    [4] MATTIELLO E M, RUIZ H A, NEVES J C L, et al. Zinc deficiency affects physiological and anatomical characteristics in maize leaves[J]. Journal of Plant Physiology, 2015, 183: 138-143.
    [5] 贾舟, 陈艳龙, 赵爱青, 等. 硫酸锌和EDTA-Zn不同施用方法对第二季小麦籽粒锌和土壤锌有效性的影响[J]. 植物营养与肥料学报, 2016, 22(6): 1595-1602.
    [6] 周斌, 张金尧, 乙引, 等. 缺锌对玉米根系发育、生长素含量及生长素转运基因表达的影响[J]. 植物营养与肥料学报, 2017, 23(5): 1352-1358.
    [7] ALLOWAY B J. Zinc in Soils and Crop Nutrition[M]. Paris: IZA and IFA, 2008.
    [8] KUTMAN U B, YILDIZ B, OZTURK L, et al. Biofortification of durum wheat with zinc through soil and foliar applications of nitrogen[J]. Cereal Chemistry, 2010, 87(1): 1-9.
    [9] 陆欣春, 田霄鸿, 杨习文, 等. 氮锌配施对石灰性土壤锌形态及肥效的影响[J]. 土壤学报, 2010, 47(6): 1202-1211.
    [10] ERENOGLU E B, KUTMAN U B, CEYLAN Y, et al. Improved nitrogen nutrition enhances root uptake, root-to-shoot translocation and remobilization of zinc (65Zn) in wheat[J]. New Phytologist, 2011, 189(2): 438-448.
    [11] LI M, WANG S X, TIAN X H, et al. Zn distribution and bioavailability in whole grain and grain fractions of winter wheat as affected by applications of soil N and foliar Zn combined with N or P[J]. Journal of Cereal Science, 2015, 61: 26-32.
    [12] 何忠俊, 华珞, 洪常青. 氮锌交互作用对黄棕壤锌形态的影响[J]. 农业环境科学学报, 2004, 23(2): 209-212.
    [13] 窦春英, 徐温新,叶正钱, 等. 6种典型农田土壤的锌吸附-解吸特性[J]. 浙江林学院学报, 2010, 27(1): 8-14.
    [14] ZHAO P, YANG F, SUI FQ, et al. Effect of nitrogen fertilizers on zinc absorption and translocation in winter wheat[J]. Journal of Plant Nutrition, 2016, 39(9): 1311-1318.
    [15] NIE Z, ZHAO P, WANG J, et al. Absorption kinetics and subcellular fractionation of zinc in winter wheat in response to nitrogen supply[J]. Frontiers in Plant Science, 2017, 8: 1435-1444.
    [16] LIU H, ZHAO P, QIN S, et al. Chemical fractions and availability of zinc in winter wheat soil in response to nitrogen and zinc combinations[J]. Frontiers in Plant Science, 2018, 9:1489-1501.
    [17] 聂兆君, 赵鹏, 秦世玉, 等. 氮锌配施对冬小麦根土界面锌有效性及形态分级的影响[J]. 植物营养与肥料学报, 2018, 24(5): 1185-1193.
    [18] 鲍士旦. 土壤农化分析[M]. 第3版. 北京: 中国农业出版社, 2000, 128-129.
    [19] 张延红, 程国斌, 马伟. 利用Origin软件对吸附等温线拟合进行分析[J]. 计算机与应用化学, 2005, 22(10): 899-902.
    [20] GUIOCHON G, FELINGER A, SHIRAZI D G G. Fundaments of preparative and nonlinear chromatography[M]. USA: Academic Press, 1994: 109.
    [21] 隋红建, 饶纪龙. 土壤离子吸持机理模型及其应用[J]. 土壤学进展, 1995, 23(1): 27-31.
    [22] SINGH D, MCLAREN R G, CAMERON K C. Zinc sorption-desorption by soils: Effect of concentration and length of contact period[J]. Geoderma, 2006, 137(1): 117-125.
    [23] ARAUJO C S T, ALMEIDA I L S, REZENDE H C, et al. Elucidation of mechanism involved in adsorption of Pb(II) onto lobeira fruit (Solanum lycocarpum) using Langmuir, Freundlich and Temkin isotherms[J]. Micorochemical Journal, 2018, 137: 348-354.
    [24] HARTER R D, BAKER D E. Applications and misapplications of the langmuir equation to soil adsorption phenomena[J]. Soil Science Society of America Journal, 1977, 41(6): 1077-1080.
    [25] AMEL B, BENAOUDA B, ABDELAZIZ B, et al. The influence of surface functionalization of activated carbon on dyes and metal ion removal from aqueous media[J]. Desalination and Water Treatment, 2016, 57(37):17557-17569.
    [26] COLES C A, YONG R N. Use of equilibrium and initial metal concentrations in determining Freundlich isotherms for soils and sediments [J].Engineering Geology, 2006, 85(1-2): 19-25.
    [27] 李玉萍. 徐州和苏州土壤中铅铜锌的吸附解吸特性研究[D]. 北京: 首都师范大学, 2007.
    [28] 赵晶, 冯文强, 秦鱼生, 等. 不同氮磷钾肥对土壤pH和有效性的影响[J]. 土壤学报, 2010, 47(5): 953-961.
    [29] MSAKY J J, CALVET R. Adsorption behavior of copper and zinc in soils, influence of pH on adsorption characteristics[J]. Soil Science, 1990, 150(2): 513-522.
    [30] ELZAHABI M, YONG R N. pH influence on sorption characteristics of heavy metal in the vadose zone[J]. Engineering Geology, 2001, 60(1): 61-68.
    [31] JALALI M, MOHARRAMI S. Competitive adsorption of trace elements in calcareous soils of western Iran[J]. Geoderma, 2007, 140(1): 156-163.
    [32] 李粉茹. 安徽凤阳几种土壤对锌的吸附[J]. 土壤通报, 2006, 37(5): 961-963.
    [33] 杨潞, 张智, 李余杰, 等. 西南地区典型农田土壤中Cd2+、Pb2+的吸附特性研究[J]. 土壤通报. 2018, 49(4): 985-992.
    [34] 龙新宪, 倪吾钟, 杨肖娥. 菜园土壤锌的吸附-解吸特性研究[J]. 土壤通报, 2002, 33(1): 51-53.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700