用户名: 密码: 验证码:
GO添加量对RGO/Cu复合材料组织与性能的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of GO Addition on Microstructure and Properties of RGO/Cu Composite
  • 作者:洪起虎 ; 燕绍九 ; 陈翔 ; 李秀辉 ; 舒小勇 ; 吴廷光
  • 英文作者:HONG Qihu;YAN Shaojiu;CHEN Xiang;LI Xiuhui;SHU Xiaoyong;WU Tingguang;Research Center of Graphene Applications, Beijing Institute of Aeronautical Materials;School of Material Science and Engineering, Nanchang Hangkong University;
  • 关键词:RGO/Cu复合材料 ; 复压复烧 ; 显微组织 ; 性能
  • 英文关键词:RGO/Cu composites;;repressing and re-sintering process;;microstructure;;properties
  • 中文刊名:CLDB
  • 英文刊名:Materials Reports
  • 机构:北京航空材料研究院石墨烯及应用研究中心;南昌航空大学材料科学与工程学院;
  • 出版日期:2019-05-25
  • 出版单位:材料导报
  • 年:2019
  • 期:v.33
  • 语种:中文;
  • 页:CLDB2019S1013
  • 页数:5
  • CN:S1
  • ISSN:50-1078/TB
  • 分类号:71-75
摘要
利用湿法球磨与复压复烧方法制备RGO/Cu复合材料,研究了GO添加量(0%、0.3%、0.5%、1.0%,质量分数,下同)对RGO/Cu复合材料的组织与性能的影响。结果表明:GO较均匀分布于铜基体中,且能起到细化晶粒的作用。GO的润滑作用促进晶粒滑移与转动,填补了晶粒间隙,提升了复合材料密度,其中0.5%RGO/Cu复合材料的相对密度最大,为99.4%。添加GO后,细化晶粒引起的晶界面积扩大以及基体密度降低都增加了电子的散射,从而导致复合材料导电率下降。细晶强化和复压作用提升了复合材料强度和硬度。与纯铜相比,1.0%RGO/Cu显微硬度(80.6HV)提升了40%;0.3%RGO/Cu的抗拉强度(241.3 MPa)提高了32%。若GO的添加量过大,其团聚使得复合材料的致密度降低,从而导致断后伸长率下降。
        RGO/Cu composites were prepared by wet milling and repressing and re-sintering process. The effect of GO addition(0%, 0.3%, 0.5%, 1.0%,wt%) on the microstructure and properties of RGO/Cu composites was investigated. The results reveal that GO was uniformly distributed in Cu matrix and played a role in refining grain. The lubrication of GO promoted grain sliding and rotation, filled the grain gap and improved the density of materials. The relative density of 0.5 wt% RGO/Cu composites was the largest(99.4%). As the GO addition, the grain boundary area expansion caused by refined grain and Cu matrix density decrease increased the scattering of electrons, and results in the composite conductivity decreases. The strength and hardness of composites were improved by fine grain strengthening and repressing process. Compared with pure copper, the hardness of 1.0 wt% RGO/Cu composites(80.6 HV) was increased by 40%, the tensile strength of 0.3 wt% RGO/Cu composites(241.3 MPa) was increased by 32%. However, the excess GO will agglomerate, then decrease composites elongation.
引文
1 Li Y P,Xiao Z,Li Z,et al.Journal of Alloys and Compounds,2017,723,1162.
    2 Lei R S,Xu S Q,Wang M P,et al.Materials Science and Engineering:A,2013,586,367.
    3 刘瑞蕊,周海涛,周啸,等.材料导报:综述篇,2012,26(10),100.
    4 Gorsse S,Ouverard B,Goune M,et al.ChemInform,2015,46(23),42.
    5 张蓓,张治国,李卫.材料导报:综述篇,2012,26(11),92.
    6 宋影影,李佳节,张彪.稀有金属与硬质合金,2010,38(3),13.
    7 Bolotin K I,Sikes K J,Jiang Z,et al.Solid State Communications,2008,146(9-10),351.
    8 Morozov S V,Novoselov K S,Katsnelson M I,et al.Physical Review Letters,2008,100(1),016602.
    9 Lee C,Wei X D,Kysar J W,et al.Science,2008,21(5887),385.
    10 独涛,张洪迪,范同祥.材料导报:综述篇,2015,29(2),121.
    11 李勇,赵亚茹,李焕,等.材料导报:综述篇,2016,30(11),71.
    12 Zhang X J,Wu K F,He M,et al.Materials Letters,2016,166,67.
    13 Yue H Y,Yao L H,Gao X,et al.Journal of Alloys and Compounds,2017,691,755.
    14 Chen F Y,Ying J M,Wang Y F,et al.Carbon,2016,96,836.
    15 Liu X,Wei D,Zhuang L,et al.Materials Science and Engineering:A,2015,642,1.
    16 Barinov ,et al.Journal of Physical Chemistry C,2009,113(21),9009.
    17 Jeong H K,Yun P L,Lahaye R J,et al.Journal of the American Chemical Society,2008,130(4),1362.
    18 邓尧,黄肖容,邬晓龄.材料导报:综述篇,2012,26(15),84.
    19 洪起虎,燕绍九,杨程,等.材料工程,2016,44(9),1.
    20 Stankovich S,Dikin D A,Piner R D,et al.Carbon,2007,45(7),1558.
    21 张煜,宋美惠,李妍春,等.化学工程师,2016(2),62.
    22 Zhai W,Shi X,Wang M,et al.Wear,2014,310(2),33.
    23 Varol T,Canakci.Metal and Materials International,2015,21,704.
    24 Dutkiewicz J,Ozga P,Maziarz W,et al.Materials Science and Enginee-ring:A,2015,628,124.
    25 杨明.石墨烯/铜复合材料的制备、组织及性能.硕士学位论文,辽宁工业大学,2016.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700