用户名: 密码: 验证码:
不同控制角下附加圆柱对圆柱涡激振动影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:EFFECTS OF THE ADDED CYLINDERS WITH DIFFERENT CONTROL ANGLES ON THE VORTEX-INDUCED VIBRATIONS OF A CIRCULAR CYLINDER
  • 作者:陈威霖 ; 及春宁 ; 许栋
  • 英文作者:Chen Weilin;Ji Chunning;Xu Dong;State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University;
  • 关键词:涡激振动 ; 浸入边界法 ; 附加小圆柱 ; 控制角 ; 弛振
  • 英文关键词:vortex-induced vibration;;immersed boundary method;;small cylinder;;control angle;;galloping
  • 中文刊名:LXXB
  • 英文刊名:Chinese Journal of Theoretical and Applied Mechanics
  • 机构:天津大学水利工程仿真与安全国家重点实验室;
  • 出版日期:2018-10-20 14:54
  • 出版单位:力学学报
  • 年:2019
  • 期:v.51
  • 基金:国家自然科学基金(51621092,51579175,51779172);; NSFC-广东联合基金(第二期)(U1501501)资助项目
  • 语种:中文;
  • 页:LXXB201902014
  • 页数:9
  • CN:02
  • ISSN:11-2062/O3
  • 分类号:132-140
摘要
在弹性支撑的圆柱周围布置直径更小圆柱会影响剪切层发展以及旋涡脱落,进而改变其涡激振动状态.通过不同的布置形式和附加小圆柱个数可以实现对圆柱涡激振动的促进或抑制.激励更大幅值的振动可以更好地将水流动能转化为可利用的机械能或电能,抑制其振动则可以实现对海洋平台等结构物的保护.采用基于迭代的嵌入式浸入边界法对前侧对称布置两个小圆柱的圆柱涡激振动进行数值模拟研究,系统仅做横向振动,其中基于主圆柱直径的雷诺数为100,质量比为2.0,折合流速为3~11.小圆柱与主圆柱的直径比为0.125,间隙比为0.125.结果表明,在研究的控制角范围内(30°~90°),附加小圆柱可以很大程度上改变圆柱涡激振动的状态.当控制角较小(30°)时,附加小圆柱对主圆柱的振动起抑制作用;当控制角为45°~60°时,圆柱的振动分为涡振和弛振两个阶段,在弛振阶段,圆柱振幅随折合流速增加而持续增加;当控制角较大(75°~90°)时,附加小圆柱的促进作用随着控制角增加而减小.进一步地,结合一个周期内不同时刻旋涡脱落以及圆周压强分布,解释了附加小圆柱对主圆柱涡激振动的作用机制.应用能量系数对圆柱系统的进一步分析发现,弛振阶段由流体传递到主圆柱的能量系数随折合流速的增加逐渐下降,旋涡结构的改变是产生这种变化的直接原因.
        Vortex-induced vibrations of an elastically mounted circular cylinder will be altered through influencing the development of the boundary layer of the surface and the vortex shedding by the added smaller cylinders. The excitation or suppression of vortex-induced vibrations can be obtained by changing the arrangement and number of the small cylinders.In the former, more fluid energy can be transformed into mechanical energy or electricity while the latter can be applied to protect the structures. Numerical simulations of a transversely vibrating cylinder with two small cylinders behind were conducted, where the Reynolds number is 100, based on the main cylinder, the mass ratio is 2.0 and the reduced velocity is 3~11. The diameter ratio between the small and the main cylinder is 0.125 and the gap ratio is 0.125. Results indicate that the small cylinders can change the vibration of the main cylinder significantly in the simulated control angle range of 30°~90°. When the control angle is small(30°), the small cylinder suppresses the vibration of the main cylinder. The response can be divided into two branches, i.e. VIV-and galloping-branch, at the control angle of 45°~60°. The vibration amplitude increases monotonically with the increasing reduced velocity in the galloping branch. When the control angle is large(75°~90°), the promotion from the small cylinder decreases with the increase of the control angle. Furtherly,mechanisms of the small cylinders are explained by combining vortex shedding and pressure distribution around the cylinder of different instants in one period. Analysis of the energy coefficient indicates that the energy transferred from the fluid to the main cylinder decreases with the reduced velocity, which is caused by the variation of vortex structures.
引文
1 Sarpkaya T.A critical review of the intrinsic nature of vortexinduced vibrations.Journal of Fluids and Structures,2004,19:389-447
    2 Wu X,Ge F,Hong Y.A review of recent studies on vortex-induced vibrations of long slender cylinders.Journal of Fluids and Structures,2012,28:292-308
    3 Williamson CHK,Govardhan R.Vortex-induced vibrations.Annual Review of Fluid Mechanics,2004,36:413-455
    4 Blevins RD.Flow-Induced Vibrations.New York:Van Nostrand Reinhold,1990
    5 Bernitsas MM,Raghavan K,Ben-Simon Y,et al.VIVACE(vortex induced vibration aquatic clean energy):A new concept in generation of clean and renewable energy from fluid flow.Journal of Offshore Mechanics and Arctic Engineering,ASME Transactions,2008,130(4):041101-041115
    6 Sakamoto H,Haniu H.Optimum suppression of fluid forces acting in a circular cylinder.Journal of Fluids Engineering,1994,116:221-227
    7 Strykowski PJ,Sreenivasan KR.On the formation and suppression of vortex‘shedding’at low Reynolds numbers.Journal of Fluid Mechanics,1990,218:71-107
    8 Wu W,Wang J.Numerical simulation of VIV for a circular cylinder with a downstream control rod at low Reynolds number.European Journal of Mechanics-B/Fluids,2018,68:153-166
    9 Schulmeister JC,Dahl JM,Weymouth GD,et al.Flow control with rotating cylinders.Journal of Fluid Mechanics,2017,825:743-763
    10 Zhu H,Yao J,Ma Y,et al.Simultaneous CFD evaluation of VIVsuppression using smaller control cylinders.Journal of Fluids and Structures,2015,57:66-80
    11 Zhu H,Gao Y.Vortex-induced vibration suppression of a main circular cylinder with two rotating control rods in its near wake:Effect of the rotation direction.Journal of Fluids and Structures,2017,74:469-491
    12 Muddada S,Patnaik BSV.An active flow control strategy for the suppression of vortex structures behind a circular cylinder.European Journal of Mechanics-B/Fluids,2010,29:93-104
    13李椿萱,彭少波,吴子牛.附属小圆柱对主圆柱绕流影响的数值模拟.北京航空航天大学学报,2003,29(11):951-958(Lee Chunhian,Peng Shaobo,Wu Ziniu.Numerical study of flow around a main cylinder by controlled satellite cylinders.Journal of Beijing University of Aeronautics and Astronautics,2003,29(11):951-958(in Chinese))
    14 Jimenez-Gonz′alez JI,Huera-Huarte FJ.Experimental sensitivity of vortex-induced vibrations to localized wake perturbations.Journal of Fluids and Structures,2017,74:53-63
    15 Korkischko I,Meneghini JR.Suppression of vortex-induced vibration using moving surface boundary-layer control.Journal of Fluids and Structures,2012,34:259-270
    16 Silva-Ortega M,Assi GRS.Hydrodynamic loads on a circular cylinder surrounded by two,four and eight wake-control cylinders.Ocean Engineering,2018,153:345-352
    17 Lou M,Chen P,Chen Z.Experimental investigation on the suppression of vortex-induced vibration of two interfering risers by control rods.Ships and Offshore Structures,2017,12(8):1117-1126
    18 Zhu H,Yao J.Numerical evaluation of passive control of VIV by small control rods.Applied Ocean Research,2015,51:93-116
    19 Silva-Ortega M,Assi GRS.Suppression of the vortex-induced vibration of a circular cylinder surrounded by eight rotating wake-control cylinders.Journal of Fluids and Structures,2017,74:401-412
    20 Song Z,Duan M,Gu J.Numerical investigation on the suppression of VIV for a circular cylinder by three small control rods.Applied Ocean Research,2017,64:169-183
    21吴皓.多根控制杆对细长柔性立管涡激振动抑制作用的实验及数值研究.[博士论文].大连:大连理工大学,2013(Wu Hao.Experimental and numerical studies on the suppression of vortex induced vibration of long flexible riser by multiple control rods.[PhD Thesis].Da Lian:Dalian University of Technology,2013(in Chinese))
    22宋吉宁,吕林,张建侨等.三根附属控制杆对海洋立管涡激振动抑制作用实验研究.海洋工程,2009,27(3):23-29(Song Jining,L¨u Lin,Zhang Jianqiao,et al.Experimental investigation of suppression of vortex-induced vibration of marine risers by three control rods.The Ocean Engineering,2009,27(3):23-29(in Chinese))
    23娄敏,朱岩.三控制杆对串联立管涡激振动抑制的试验分析.船海工程,2018,47(1):124-128(Lou Min,Zhu Yan.Experimental study on vortex-induced vibration suppression of tandem risers with three-control-rods.Ship&Ocean Engineering,2018,47(1):124-128(in Chinese))
    24 Ji C,Munjiza A,Williams JJR.A novel iterative direct-forcing immersed boundary method and its finite volume applications.Journal of Computational Physics,2012,231:1797-1821
    25 Chen W,Ji C,Xu W,et al.Response and wake patterns of two sideby-side elastically supported circular cylinders in uniform laminar cross-flow.Journal of Fluids and Structures,2015,55:218-236
    26 Bourguet R,Jacono DL.Flow-induced vibrations of a rotating cylinder.Journal of Fluid Mechanics,2014,740:342-380
    27 Shiels D,Leonard A,Roshko A.Flow-induced vibration of a circular cylinder at limiting structural parameters.Journal of Fluids and Structures,2001,15:3-21
    28 Chen W,Ji C,Wang R,et al.Flow-induced vibrations of two sideby-side circular cylinders:Asymmetric vibration,symmetry hysteresis and near-wake patterns.Ocean Engineering,2015,110:244-257
    29 Chen W,Ji C,Williams J,et al.Vortex-induced vibrations of three tandem cylinders in laminar cross-flow:vibration response and galloping mechanism.Journal of Fluids and Structures,2018,78:215-238
    30陈威霖,及春宁,许栋.低雷诺数下串列三圆柱涡激振动中的弛振现象及其影响因素.力学学报,2018,50(4):766-775(Chen Weilin,Ji Chunning,Xu Dong.Galloping in vortex-induced vibration of three tandem cylinders at low Reynolds numbers and its influencing factors.Chinese Journal of Theoretical and Applied Mechanics,2018,50(4):766-775(in Chinese))
    31及春宁,花阳,许栋等.不同剪切率来流作用下柔性圆柱涡激振动数值模拟.力学学报,2018,50(1):21-31(Ji Chunning,Hua Yang,Xu Dong,et al.Numerical simulation of vortex-induced vibration of a flexible cylinder exposed to shear flow at different shear rates.Chinese Journal of Theoretical and Applied Mechanics,2018,50(1):21-31(in Chinese))
    32陈威霖,及春宁,徐万海.并列双圆柱流致振动的不对称振动和对称性迟滞研究.力学学报,2015,47(5):731-739(Chen Weilin,Ji Chunning,Xu Wanhai.Numerical investigation on the asymmetric vibration and symmetry hysteresis of flow-induced vibration of two side-by-side cylinders.Chinese Journal of Theoretical and Applied Mechanics,2015,47(5):731-739(in Chinese))
    33 Qin B,Alam MM,Zhou Y.Two tandem cylinders of different diameters in cross-flow:Flow-induced vibration.Journal of Fluid Mechanics,2017,829:621-658
    34 Williamson CHK,Roshko A.Vortex formation in the wake of an oscillating cylinder.Journal of Fluids and Structures,1988,2:355-381
    35 Paidoussis,MP,Price SJ,et al.Fluid-Structure Interactions:CrossFlow-Induced Instabilities.Cambridge University Press.2010
    36 Navrose N,Mittal S.Lock-in in vortex-induced vibration.Journal of Fluid Mechanics,2016,794:565-594

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700