用户名: 密码: 验证码:
基于氧化石墨烯的瓦级调Q锁模Tm:LuAG激光器
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Watt-level passively Q-switched mode-locked Tm: LuAG laser with graphene oxide saturable absorber
  • 作者:孙锐 ; 陈晨 ; 令维军 ; 张亚妮 ; 康翠萍 ; 许强
  • 英文作者:Sun Rui;Chen Chen;Ling Wei-Jun;Zhang Ya-Ni;Kang Cui-Ping;Xu Qiang;Institute of Physics and Optoelectronics Technology,Baoji University of Arts and Sciences;Institute of Laser Technology,Tianshui Normal University;School of Arts and Sciences,Shaanxi University of Science and Technology;
  • 关键词:Tm ; LuAG激光器 ; 高功率 ; 调Q锁模 ; 氧化石墨烯
  • 英文关键词:high power;;Tm:LuAG laser;;Q-switched mode-locking;;graphene oxide
  • 中文刊名:WLXB
  • 英文刊名:Acta Physica Sinica
  • 机构:宝鸡文理学院物理与光电技术学院;天水师范学院激光技术研究所;陕西科技大学文理学院;
  • 出版日期:2019-05-23
  • 出版单位:物理学报
  • 年:2019
  • 期:v.68
  • 基金:国家自然科学基金(批准号:61564008,11774257,11647008,11504416);; 陕西省国际科技合作与交流项目(批准号:2018KW-016);; 宝鸡市重大科技专项计划项目(批准号:2015CXNL-1-3)资助的课题~~
  • 语种:中文;
  • 页:WLXB201910014
  • 页数:6
  • CN:10
  • ISSN:11-1958/O4
  • 分类号:127-132
摘要
在Tm:LuAG全固态激光器中实现了以氧化石墨烯可饱和吸收体为锁模启动元件的瓦级被动调Q锁模运转.本实验装置以可调谐掺钛蓝宝石激光器作为泵浦源,测得Tm:LuAG固态激光器出光阈值最低为325mW,当吸收抽运功率达到3420 mW时,进入稳定的调Q锁模运行状态.当抽运功率达到8.1 W时,对应的最大输出功率为1740 mW,中心波长为2023 nm,重复频率为104.2 MHz,最大单脉冲能量为16.7 nJ,调制深度接近100%.
        A watt-level passive Q-switched mode-locked operation in Tm: LuAG all-solid-state laser is realized for the first time by using graphene oxide(GO) saturable absorber as a mode-locked starting element. The laser is pumped by a wavelength tunable Ti: sapphire laser operating at 794.2 nm. In this experiment, the maximum continuous-wave(CW) output power of 1440 mW, 2030 mW and 2610 mW are obtained by 1.5%, 3% and 5%output coupled(OC) mirrors respectively, in which the corresponding slope efficiencies are 22.3%, 32.6% and40.6%, respectively. When the GO is inserted into the cavity, the laser bump threshold is further increased due to more intracavity loss. With a 1.5% OC mirror, the absorbed pump threshold is as low as 325 mW, the maximum output power is 787 mW, and the corresponding slope efficiency is 12.5%. With a 3% OC mirror, the absorbed bump threshold is 351 mW, the maximum output power is 1740 mW, and corresponding slope efficiency is 30.3%. With a 5% OC mirror, the QML operation is not realized due to the increase of intracavity loss. Although the laser pump threshold power of 3% OC mirror differs from that of 1.5% OC mirror by 26 mW, the output power is more than twice higher than that of 1.5% OC mirror. For these reasons, we use a 3%OC mirror in our experiment. In this case, a stable QML operation with a threshold of 3420 mW is obtained.When the pump power reaches 8.1 W, the corresponding maximum output power is 1740 mW, the central wavelength is 2023 nm, the repetition frequency is 104.2 MHz, the maximum single pulse energy is 16.7 nJ, and the modulation depth is close to 100%. According to the symmetrical shape of the mode locked pulse and considering the definition of rise time, we can assume that the duration of the pulse is approximately 1.25 times the pulse rise time. So the width of the mode locked pulse is estimated at about 923.8 ps. The results show that the GO is a promising high power saturable absorber in 2 μm wavelength for the QML solid-state laser. In the next stage, we will increase the pump power, optimize the quality of the GO material, and compensate for the dispersion in the cavity. It is expected to achieve a CW mode-locked operation and femtosecond pulse output.
引文
[1]Kaufmann R,Hibst R 1996 Lasers Surg.Med.19 324
    [2]Sorokin E,Sorokina I T,Mandon J,Guelachvili G,PicquéN2007 Opt.Express 15 16540
    [3]Li J,Luo H,Wang L,Liu Y,Yan Z,Zhou K,Zhang L,Turistsyn S K 2015 Sci.Rep.5 10770
    [4]Yao B Q,Shen Y J,Duan X M,Dai T Y,Ju Y L,Wang Y Z2014 Opt.Lett.39 6589
    [5]Feng T,Yang K,Zhao J,Zhao S,Qiao W,Li T,Dekorsy T,He J,Zheng L,Wang Q 2015 Opt.Express 23 11819
    [6]Ling W J,Xia T,Dong Z,Zuo Y Y,Li K,Liu Q,Lu F P,Zhao X L,Wang Y G 2008 Acta Phys.Sin.67 014201(in Chinese)[令维军,夏涛,董忠,左银艳,李可,刘勍,路飞平,赵小龙,王勇刚2008物理学报67 014201]
    [7]Cho W B,Schmidt A,Yim J H,Choi S Y,Lee S,Rotermund F,Griebner U,Steinmeyer G,Petrov V,Mateos X,Pujol MC,Carvajal J J,AguilóM,Díaz F 2009 Opt.Express 1711007
    [8]Zou X,Leng Y,Li Y,Feng Y,Zhang P,Hang Y,Wang J2015 Chin.Opt.Lett.13 081405
    [9]Kong L C,Xie G Q,Yuan P,Qian L J,Wang S X,Yu H H,Zhang H J 2015 Photon.Res.3 A47
    [10]Li L,Jiang S,Wang Y,Wang X,Duan L,Mao D,Li Z,Man B,Si J 2015 Opt.Express 23 28698
    [11]Xu S C,Man B Y,Jiang S Z,Chen C S,Yang C,Liu M,Huang Q J,Zhang C,Bi D,Meng X,Liu F Y 2014 Opt.Laser Technol.56 393
    [12]Ma J,Xie G Q,LüP,Gao W L,Yuan P,Qian L J,Yu H H,Zhang H J,Wang J Y,Tang D Y 2012 Opt.Lett.37 2085
    [13]Ma J,Xie G,Zhang J,Yuan P,Tang D,Qian L 2015 IEEEJ.Sel.Top.Quantum Electron.21 50
    [14]Zhu Y,Murali S,Cai W,Li X,Ji W S,Potts J R,Ruoff R S2010 Adv.Mater.(Weinheim,Ger.)22 3906
    [15]Zhang L,Wang Y G,Yu H J,Zhang S B,Hou W,Lin X C,Li J M 2011 Laser Phys.21 2072
    [16]Wang Y,Qu Z,Liu J,Tsang Y H 2012 J.Lightwave Technol.30 3259
    [17]Liu J,Wang Y G,Qu Z S,Zheng L H,Su L B,Xu J 2012Laser Phys.Lett.9 15
    [18]Wu C,Ju Y,Li Y,Wang Z,Wang Y 2008 Chin.Opt.Lett.6415
    [19]Zhou D 2007 Ph.D.Dissertation(Shanghai:Shanghai University)(in Chinese)[周鼎2017博士学位论文(上海:上海大学)]
    [20]Wu C T,Ju Y L,Wang Q,Wang Z G,Chen F,Zhou R L,Wang Y Z 2009 Laser Phys.Lett.6 707
    [21]Chen F,Wu C T,Ju Y L,Yao B Q,Wang Y Z 2012 Laser Phys.22 371
    [22]Zeng H,Liu G B,Dai J,Yan Y,Zhu B,He R,Xie L,Xu S,Chen X,Yao W,Cui X 2013 Sci.Rep.3 1608
    [23]Mak K F,Lee C,Hone J,Shan J,Heinz T F 2010 Phys.Rev.Lett.105 136805
    [24]Splendiani A,Sun L,Zhang Y,Li T,Kim J,Chim C Y,Galli G,Wang F 2010 Nano Lett.10 1271
    [25]Li Z Y,Zhang B T,Yang J F,He J L,Huang H T,Zuo C H,Xu J L,Yang X Q,Zhao S 2010 Laser Phys.20 761

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700