用户名: 密码: 验证码:
无人机喷施雾滴在水稻群体内的沉积分布及防效研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:A Study on Deposition Distribution of Droplets by UAV Sprayin Rice Population and Its Efficacy
  • 作者:韩冲冲 ; 李飞 ; 李保同 ; 石绪根 ; 熊忠华
  • 英文作者:HAN Chong-chong;LI Fei;LI Bao-tong;SHI Xu-gen;XIONG Zhong-hua;College of Agronomy,Jiangxi Agricultural University;
  • 关键词:无人机 ; 雾滴 ; 沉积 ; 水稻 ; 戊唑醇·肟菌酯 ; 稻瘟病 ; 纹枯病 ; 防效
  • 英文关键词:UAV;;droplet;;deposition;;rice;;tebuconazole·trifloxystrobin;;rice blast;;sheath blight;;efficacy
  • 中文刊名:JXND
  • 英文刊名:Acta Agriculturae Universitatis Jiangxiensis
  • 机构:江西农业大学农学院;
  • 出版日期:2019-02-20
  • 出版单位:江西农业大学学报
  • 年:2019
  • 期:v.41;No.213
  • 基金:国家“十三·五”重点研发计划项目(2017YFD0301604)~~
  • 语种:中文;
  • 页:JXND201901008
  • 页数:10
  • CN:01
  • ISSN:36-1028/S
  • 分类号:64-73
摘要
为阐明3WWDZ-10B型植保无人机喷雾雾滴在水稻生长后期的沉积效果,研究了飞行作业高度对无人机喷雾雾滴在水稻群体内沉积分布的影响,比较了无人机喷施与人工喷施75%戊唑醇?肟菌酯水分散粒剂(WDG)对水稻稻瘟病(Pyricularia grisea Sacc.)和纹枯病(Rhizoctonia solani Kühn)的防治效果。结果表明,3WWDZ-10B型植保无人机在作业高度2 m时雾滴的沉积覆盖率和分布密度最高,其次为作业高度2.5 m处理。在同一作业高度下,雾滴沉积覆盖率和分布密度由大到小依次为水稻上层、中层和下层,作业高度对雾滴分布均匀性无显著影响。作业高度对雾滴沉积穿透性有较大影响,在作业高度1.2~2.5 m,雾滴沉积穿透性随着作业高度的上升而逐渐增强。在不同作业高度下,雾滴粒径的体积中值直径(DV.5)主要分布在396~968μm,其中在水稻上、中层以作业高度2 m处理的DV.5最大,而在水稻下层以作业高度3.0 m处理的DV.5最大。在不同作业高度下,雾滴粒径相对粒谱宽度变化不大;在同一作业高度下,水稻上、中层的相对粒谱宽度均大于下层。在不同作业高度下,75%戊唑醇?肟菌酯WDG对水稻稻瘟病和纹枯病防效均随着使用剂量的增加而显著上升;中、低使用剂量(160 g/hm2和120 g/hm2)防效随着雾滴密度的增加而上升,而高使用剂量(200 g/hm2)防效与雾滴密度关系不大。雾滴大小对防效无显著影响。在作业高度1.5~2.5 m,75%戊唑醇·肟菌酯WDG无人机喷施对水稻稻瘟病和纹枯病防效与人工喷施处理无显著差异,而其经济效益约为人工喷施的1.5倍。该研究为3WWDZ-10B型植保无人机在水稻病害防治上的应用提供技术依据。
        The effects of flight heights on the droplet deposition and distribution by unmanned aerial vehi?cle(UAV)spray in rice population were investigated in order to elucidate the effect of droplet deposition by plant protection UAV(3 WWDZ-10 B type)spray at the later stage of rice growth.The efficacies of tebucon?azole·trifloxystrobin 75% water dispersible granule(WDG)on rice blast(Pyricularia grisea Sacc.)and sheath blight(Rhizoctonia solani Kühn)were compared between UAV spray and artificial spray.The results showed that the deposition coverage and distribution density of droplets were the highest when the working height was 2 m,followed by 2.5 m working height.The droplet deposition coverage and distribution density in rice population was as follows:upper layer > middle layer > lower layer at the same operating height,and the working height had no significant effect on the uniformity of droplet distribution.The working height had a great influence on the penetration of droplet deposition.In the range of 1.2 to 2.5 m,the penetration of droplet deposition gradually increased with the increase of working height.The median volume diameter of droplets(DV.5)by plant protec?tion UAV(3 WWDZ-10 B type)spray was mainly distributed in the range of 396-968 μm.The DV.5 was the largest in the upper and middle layers of rice at 2 m working height,and in the lower layer of the rice at 3.0 m working height.The relative particle spectrum width of droplets had little change at different working heights,and the relative particle spectrum width in upper and middle layers of rice was larger than that in the lower lay?er at the same working height.The efficacies of tebuconazole·trifloxystrobin 75% WDG on rice blast and sheath blight increased significantly with the increase of using dose at different working heights.The efficiencies of the treatments at the middle and low use doses(160 and 120 g/hm2)increased with the increase of droplet density,while the efficacy of the high dose(200 g/hm2)was not related to droplet density.The droplet size had no signifi?cant effect on the efficacy.There was no significant difference between the efficacies of tebuconazole·trifloxys?trobin 75% WDG by UAV spray in the range of 1.5-2.5 m working heights and artificial spray on rice blast and sheath blight,while its economic benefit was about 1.5 times as much as that of artificial spray.This study pro?vides technical basis for the application of plant protection UAV(3 WWDZ-10 B type)in rice disease control.
引文
[1]程勇翔,王秀珍,郭建平,等.中国水稻生产的时空动态分析[J].中国农业科学,2012,45(17):3473-3485.Cheng Y X,Wang X Z,Guo J P,et al.The temporal-spatial dynamic analysis of China rice production[J].Scientia Agricul?tura Sinica,2012,45(17):3473-3485.
    [2]邵正英,聂丽,徐志荣,等.链霉菌JD211对水稻酚类物质及相关酶活的影响[J].江西农业大学学报,2017,39(5):983-988.Shao Z Y,Nie L,Xu Z R,et al.Effects of streptomyces JD211 on phenolic compounds and the activity of related enzymes inrice[J].Acta Agriculturae Universitatis Jiangxiensis,2017,39(5):983-988.
    [3]刘海涛,徐倩,何炜,等.水稻稻瘟病抗性变化及抗性基因克隆的研究进展[J].福建农业学报,2016,31(5):545-552.Liu H T,Xu Q,He W,et al.Recent progress on the variation of blast resistance and cloning of the resistance genes in rice[J].Fujian Journal of Agricultural Sciences,2016,31(5):545-552.
    [4]李雪婷,徐梦亚,郑少兵,等.水稻纹枯病研究进展[J].长江大学学报(自科版),2017,14(14):15-18.Li X T,Xu M Y,Zheng S B,et al.Research progress of rice sheath blight[J].Journal of Yangtze University(Natural Sci?ence Edition),2017,14(14):15-18.
    [5]杨学军,严荷荣,徐赛章,等.植保机械的研究现状及发展趋势[J].农业机械学报,2002,33(6):129-131.Yang X J,Yan H R,Xu S Z,et al.Current situation and development trend of equipment for crop protection[J].Transactionsof the Chinese Society of Agricultural Machinery,2002,33(6):129-131.
    [6]何雄奎.改变我国植保机械和施药技术严重落后的现状[J].农业工程学报,2004,20(1):13-15.He X K.Improving severe draggling actuality of plant protection machinery and its application techniques[J].Transactionsof the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2004,20(1):13-15.
    [7]黄向东,方志蓉.超轻型直升飞机与固定翼飞机在森林病虫害防治应用中的比较研究[J].长沙电力学院学报(自然科学版),1999,14(3):279-281.Huang X D,Fang Z R.Study on comparing helicopter with plane application in forest pest and disease control[J].Journal ofChangsha University of Electric Power(Natural Science),1999,14(3):279-281.
    [8]张京,何雄奎,宋坚利,等.无人驾驶直升机航空喷雾参数对雾滴沉积的影响[J].农业机械学报,2012,43(12):94-96.Zhang J,He X K,Song J L,et al.Influence of spraying parameters of unmanned aircraft on droplets deposition[J].Transac?tions of the Chinese Society of Agricultural Machinery,2012,43(12):94-96.
    [9]王昌陵,何雄奎,王潇楠,等.无人植保机施药雾滴空间质量平衡测试方法[J].农业工程学报,2016,32(11):54-61.Wang C L,He X K,Wang X N,et al.Testing method of spatial pesticide spraying deposition quality balance for unmannedaerial vehicle[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2016,32(11):54-61.
    [10]王昌陵,宋坚利,何雄奎,等.植保无人机飞行参数对施药雾滴沉积分布特性的影响[J].农业工程学报,2017,33(23):109-116.Wang C L,Song J L,He X K,et al.Effect of flight parameters on distribution characteristics of pesticide spraying dropletsdeposition of plant-protection unmanned aerial vehicle[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2017,33(23):109-116.
    [11]张盼,吕强,易时来,等.小型无人机对柑橘园的喷雾效果研究[J].果树学报,2016,33(1):34-42.Zhang P,LüQ,Yi S L,et al.Evaluation of spraying effect using small unmanned aerial vehicle(UAV)in citrus orchard[J].Journal of Fruit Science,2016,33(1):34-42.
    [12]陈盛德,兰玉彬,周志艳,等.小型植保无人机喷雾参数对橘树冠层雾滴沉积分布的影响[J].华南农业大学学报,2017,38(5):97-102.Chen S D,Lan Y B,Zhou Z Y,et al.Effects of spraying parameters of small plant protection UAV on droplets deposition dis?tribution in citrus canopy[J].Journal of South China Agricultural University,2017,38(5):97-102.
    [13]秦维彩,薛新宇,周立新,等.无人直升机喷雾参数对玉米冠层雾滴沉积分布的影响[J].农业工程学报,2014,30(5):50-56.Qin W C,Xue X Y,Zhou L X,et al.Effects of spraying parameters of unmanned aerial vehicle on droplets deposition distri?bution of maize canopies[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2014,30(5):50-56.
    [14]Fritz B K,Kirk I W,Hoffmann W C.Aerial application methods for increasing spray deposition on wheat heads[J].Transactions of the ASABE,2006,22(3):357-364.
    [15]Fritz B K,Hoffmann W C.Update to the USDA-ARS fixed-wing spray nozzle models[J].Transactions of the ASABE,2015,58(2):281-295.
    [16]高圆圆,张玉涛,赵酉城,等.小型无人机低空喷洒在玉米田的雾滴沉积分布及对玉米螟的防治效果初探[J].植物保护,2013,39(2):152-157.Gao Y Y,Zhang Y T,Zhao Y C,et al.Primary studies on spray droplet distribution and control effects of aerial spraying us?ing unmanned aerial vehicle(UAV)against the corn borer[J].Plant Protection,2013,39(2):152-157.
    [17]高圆圆,张玉涛,张宁,等.小型无人机低空喷洒在小麦田的雾滴沉积分布及对小麦吸浆虫的防治效果初探[J].作物杂志,2013(2):139-142.Gao Y Y,Zhang Y T,Zhang N,et al.Primary studies on spray droplets distribution and control effects of aerial spraying us?ing unmanned aerial vehicle(UAV)against wheat midge[J].Crops,2013(2):139-142.
    [18]陈盛德,兰玉彬,李继宇,等.小型无人直升机喷雾参数对杂交水稻冠层雾滴沉积分布的影响[J].农业工程学报,2016,32(17):40-46.Chen S D,Lan Y B,Li J Y,et al.Effect of spray parameters of small unmanned helicopter on distribution regularity of drop?let deposition in hybrid rice canopy[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of theCSAE),2016,32(17):40-46.
    [19]陈盛德,兰玉彬,李继宇,等.航空喷施与人工喷施方式对水稻施药效果比较[J].华南农业大学学报,2017,38(4):103-109.Chen S D,Lan Y B,Li J Y,et al.Comparison of the pesticide effects of aerial and artificial spray applications for rice[J].Journal of South China Agricultural University,2017,38(4):103-109.
    [20]许童羽,于丰华,曹英丽,等.粳稻多旋翼植保无人机雾滴沉积垂直分布研究[J].农业机械学报,2017,48(10):101-107.Xu T Y,Yu F H,Cao Y L,et al.Vertical distribution of spray droplet deposition of plant protection multi rotor UAV for ja?ponica rice[J].Transactions of the Chinese Society of Agricultural Machinery,2017,48(10):101-107.
    [21]杜文,曹英丽,许童羽,等.无人机喷雾参数对粳稻冠层沉积量的影响及评估[J].农机化研究,2017,39(4):182-185.Du W,Cao Y L,Xu T Y,et al.Effect and assessment of UAV spraying parameters at japonica rice canopies[J].Journal of Ag?ricultural Mechanization Research,2017,39(4):182-185.
    [22]兰波,刘方义,徐善忠,等.植保无人机超低容量喷施技术防治水稻纹枯病的药效评价[J].江西农业学报,2017,29(11):55-58.Lan B,Liu F Y,Xu S Z,et al.Effect evaluation of applying ultra-low-capacity spraying technology by plant-protection un?manned aerial vehicle to control rice sheath blight[J].Acta Agriculturae Jiangxi,2017,29(11):55-58.
    [23]何玲,王国宾,胡韬,等.喷雾助剂及施液量对植保无人机喷雾雾滴在水稻冠层沉积分布的影响[J].植物保护学报,2017,44(6):1046-1052.He L,Wang G B,Hu T,et al.Influences of spray adjuvants and spray volume on the droplet deposition distribution with un?manned aerial vehicle(UAV)spraying on rice[J].Journal of Plant Protection,2017,44(6):1046-1052.
    [24]刘迎,潘波,姜蕾,等.添加飞防助剂对无人机防治水稻病害的影响[J].农药,2018,57(4):299-301.Liu Y,Pan B,Jiang L,et al.Influence of adding adjuvants for aviation plant protection on control efficacy of rice diseases us?ing unmanned aerial vehicle[J].Agrochemicals,2018,57(4):299-301.
    [25]陈前武,钟莉,王芳,等.75%肟菌酯·戊唑醇(NATIVO)防治稻曲病田间试验[J].江西农业学报,2009,21(5):92-93.Chen Q W,Zhong L,Wang F,et al.Field experiment in control of rice false smut by fungicide 75%NATIVIO[J].Acta Agri?culturae Jiangxi,2009,21(5):92-93.
    [26]Zhu H P,Masoud S,Robert D F.A portable scanning system for evaluation of spray deposit distribution[J].Computers andElectronics in Agriculture,2011,76(1):38-43.
    [27]Ebert T A,Downer R A.A different look at experiments on pesticide distribution[J].Crop Protection,2006,25(4):299-309.
    [28]Ebert T A,Taylor R A,Downer R A,et al.Deposit structure and efficacy of pesticide application.1:Interactions betweendeposit size,toxicant concentration and deposit number[J].Pesticide Science,1999,55(8):783-792.
    [29]袁会珠,王国宾.雾滴大小和覆盖密度与农药防治效果的关系[J].植物保护,2015,41(6):9-16Yuan H Z,Wang G B.Effects of droplet size and deposition density on field efficacy of pesticides[J].Plant Protection,2015,41(6):9-16.
    [30]Prokop M,Veverka K.Influence of droplet spectra on the efficiency of contact fungicides and mixtures of contact andsystemic fungicides[J].Plant Protection Science,2006(1):26-33.
    [31]Grinstein A,Riven Y,Elad Y.Improved chemical control of botrytis blight in roses[J].Phytoparasitica,1997,25(1):87-92.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700