用户名: 密码: 验证码:
抑制富镍正极材料微裂纹产生的研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Progress of suppressing formation of microcracks in Ni-rich cathode materials
  • 作者:陈滔 ; 谢正伟 ; 汪沣 ; 闫新秀 ; 瞿美臻
  • 英文作者:CHEN Tao;XIE Zheng-wei;WANG Feng;YAN Xin-xiu;QU Mei-zhen;Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences;University of Chinese Academy of Sciences;Shenzhen New Hengye Battery Technology Co., Ltd.;
  • 关键词:富镍正极材料 ; 微裂纹 ; 改进措施
  • 英文关键词:Ni-rich cathode materials;;microcracks;;improvement measures
  • 中文刊名:DYJS
  • 英文刊名:Chinese Journal of Power Sources
  • 机构:中国科学院成都有机化学研究所;中国科学院大学;深圳新恒业电池科技有限公司;
  • 出版日期:2019-07-20
  • 出版单位:电源技术
  • 年:2019
  • 期:v.43;No.346
  • 基金:国家自然科学基金项目(1474196)
  • 语种:中文;
  • 页:DYJS201907043
  • 页数:4
  • CN:07
  • ISSN:12-1126/TM
  • 分类号:141-144
摘要
富镍正极材料因具有能量密度高、成本低等优点而备受关注。但其较差的结构稳定性导致循环性能不理想,极大地限制了该类材料在锂离子电池中的广泛应用。讨论了微裂纹的产生原因及微裂纹对富镍正极材料电化学性能的影响,综述了抑制微裂纹产生的改进措施,并对富镍正极材料的进一步改性作了展望。
        Ni-rich cathode materials have attracted attention because of their high energy density, low cost and environmental friendliness. However, the poor structural stability of Ni-rich materials leads to the rapid decline of capacity, greatly limiting the widespread use of such materials in lithium-ion batteries. The mechanism of microcracks in Ni-rich materials and its effect on electrochemical properties were discussed. The improvement measures to suppress the generation of microcracks were reviewed, and the further modification of Ni-rich cathode materials was discussed.
引文
[1] GOODENOUGH J B. Electrochemical energy storage in a sustainable modern society[J]. Energy&Environmental Science, 2014, 7(1):14-18.
    [2] CHOI J W, AURBACH D. Promise and reality of post-lithium-ion batteries with high energy densities[J]. Nature Reviews Materials,2016, 1(4):16013.
    [3] LEE W, MUHAMMAD S, KIM T, et al. New insight into Ni-rich layered structure for next-generation Li rechargeable batteries[J].Advanced Energy Materials, 2018, 8(4):1701788.
    [4] MYUNG S T, MAGLIA F, PARK K J, et al. Nickel-rich layered cathode materials for automotive lithium-ion batteries:achievements and perspectives[J]. Acs Energy Letters, 2017, 2(1):196-223.
    [5] SCHIPPER F, ERICKSON E M, ERK C, et al. Review-recent advances and remaining challenges for lithium ion battery cathodes[J].Journal of the Electrochemical Society,2016, 164(1):A6220-A6228.
    [6] LIN F, MARKUS I M, NORDLUND D, et al. Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries[J]. Nature Communications, 2014, 5:1-9.
    [7] JUNG S K, GWON H, HONG J, et al. Understanding the degradation mechanisms of LiNi0.5Co0.2Mn0.3O2cathode material in lithium ion batteries[J]. Advanced Energy Materials, 2014, 4(1):1300787.
    [8] BAK S M, HU E Y, ZHOU Y N, et al. Structural changes and thermal stability of charged LiNixMnyCozO2cathode materials studied by combined in situ time-resolved XRD and mass spectroscopy[J].ACS Applied Materials&Interfaces, 2014, 6(24):22594-22601.
    [9] CHO D H, JO C H, CHO W, et al. Effect of residual lithium compounds on layer Ni-rich Li[Ni0.7Mn0.3]O2[J]. Journal of the Electrochemical Society, 2014, 161(6):A920-A926.
    [10] YAN P, ZHENG J, GU M, et al. Intragranular cracking as a critical barrier for high-voltage usage of layer-structured cathode for lithium-ion batteries[J]. Nat Communications, 2017, 8:14101.
    [11] SUN H H, MANTHIRAM A. Impact of microcrack generation and surface degradation on a Nickel-rich layered Li[Ni0.9Co0.05Mn0.05]O2cathode for lithium-ion batteries[J]. Chemistry of Materials, 2017,29(19):8486-8493.
    [12] LIU H, WOLF M, KARKI K, et al. Intergranular cracking as a major cause of long-term capacity fading of layered cathodes[J].Nano Letters, 2017, 17(6):3452-3457.
    [13] MAKIMURA Y, ZHENG S, IKUHARA Y, et al. Microstructural observation of LiNi0.8Co0.15Al0.05O2after charge and discharge by scanning transmission electron microscopy[J]. Journal of the Electrochemical Society, 2012, 159(7):A1070-A1073.
    [14] KIM H, KIM M G, JEONG H Y, et al. A new coating method for alleviating surface degradation of LiNi0.6Co0.2Mn0.2O2cathode material:nanoscale surface treatment of primary particles[J]. Nano Letters, 2015, 15(3):2111-2119.
    [15] WATANABE S, KINOSHITA M, HOSOKAWA T, et al. Capacity fade of LiAlyNi1-x-yCoxO2cathode for lithium-ion batteries during accelerated calendar and cycle life tests(surface analysis of LiAlyNi1-x-yCoxO2cathode after cycle tests in restricted depth of discharge ranges)[J]. Journal of Power Sources, 2014, 258:210-217.
    [16] YOON C S, JUN D W, MYUNG S T, et al. Structural stability of LiNiO2cycled above 4.2 V[J]. ACS Energy Letters, 2017, 2(5):1150-1155.
    [17] HWANG S, CHANG W, KIM S M, et al. Investigation of changes in the surface structure of LixNi0.8Co0.15Al0.05O2cathode materials induced by the initial charge[J]. Chemistry of Materials, 2014, 26(2):1084-1092.
    [18] B魻RNER M, HORSTHEMKE F, KOLLMER F, et al. Degradation effects on the surface of commercial LiNi0.5Co0.2Mn0.3O2electrodes[J]. Journal of Power Sources, 2016, 335:45-55.
    [19] NOH H J, YOUN S, YOON C S, et al. Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2(x=1/3, 0.5, 0.6, 0.7, 0.8 and 0.85)cathode material for lithium-ion batteries[J]. Journal of Power Sources, 2013, 233:121-130.
    [20] SUN Y K, MYUNG S T, PARK B C, et al. High-energy cathode material for long-life and safe lithium batteries[J]. Nat Mater, 2009,8(4):320-324.
    [21] SUN Y K, CHEN Z, NOH H J, et al. Nanostructured high-energy cathode materials for advanced lithium batteries[J]. Nat Mater,2012, 11(11):942-947.
    [22] LEE E J, CHEN Z, NOH H J, et al. Development of microstrain in aged lithium transition metal oxides[J]. Nano Letters, 2014, 14(8):4873-4880.
    [23] KIM J, CHO H, JEONG H Y, et al. Self-induced concentration gradient in nickel-rich cathodes by sacrificial polymeric bead clusters for high-energy lithium-ion batteries[J]. Advanced Energy Materials, 2017, 7(12):1602559.
    [24] CHO Y, OH P, CHO J. A new type of protective surface layer for high-capacity Ni-based cathode materials:nanoscaled surface pillaring layer[J]. Nano Letters, 2013, 13(3):1145-1152.
    [25] CHO Y, LEE S, LEE Y, et al. Spinel-layered core-shell cathode materials for Li-ion batteries[J]. Advanced Energy Materials, 2011,1(5):821-828.
    [26] KIM H, LEE S, CHO H, et al. Enhancing interfacial bonding between anisotropically oriented grains using a glue-nanofiller for advanced Li-ion battery cathode[J]. Advanced Materials, 2016, 28(23):4705-4712.
    [27] JING Y, HUANG B X, YIN J Y, et al. Structure integrity endowed by a Ti-containing surface layer towards ultrastable LiNi0.8Co0.15-Al0.05O2for all-solid-state lithium batteries[J]. Journal of The Electrochemical Society 2016, 163(8):A1530-A1534.
    [28] MUTO S, TATSUMI K, KOJIMA Y, et al. Effect of Mg-doping on the degradation of LiNiO2-based cathode materials by combined spectroscopic methods[J]. Journal of Power Sources, 2012, 205:449-455.
    [29] CHEN T, LI X, WANG H, et al. The effect of gradient boracic polyanion-doping on structure, morphology, and cycling performance of Ni-rich LiNi0.8Co0.15Al0.05O2cathode material[J]. Journal of Power Sources, 2018, 374:1-11.
    [30] KIM J, LEE H, CHA H, et al. Prospect and reality of Ni-rich cathode for commercialization[J]. Advanced Energy Materials, 2018,8(6):1702028.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700