用户名: 密码: 验证码:
高性能结构抗多次多种灾害全寿命性能分析与设计理论研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research progress on life-cycle multihazard-based design theory for high-performance structures
  • 作者:李宏男 ; 郑晓伟 ; 李超
  • 英文作者:LI Hongnan;ZHENG Xiaowei;LI Chao;Faculty of Infrastructure Engineering, Dalian University of Technology;School of Civil Engineering, Shenyang Jianzhu University;
  • 关键词:高性能结构 ; 多次多种灾害 ; 环境作用模型 ; 易损性分析 ; 全寿命周期成本分析 ; 抗灾优化设计
  • 英文关键词:high-performance structure;;multiple hazards;;environmental effect model;;fragility analysis;;life-cycle cost analysis;;multihazard-based optimization design
  • 中文刊名:JZJB
  • 英文刊名:Journal of Building Structures
  • 机构:大连理工大学建设工程学部;沈阳建筑大学土木工程学院;
  • 出版日期:2018-12-05 16:42
  • 出版单位:建筑结构学报
  • 年:2019
  • 期:v.40
  • 基金:国家重点研发计划(2016YFC0701108);; 国家自然科学基金项目(51738007,51808099)
  • 语种:中文;
  • 页:JZJB201902004
  • 页数:14
  • CN:02
  • ISSN:11-1931/TU
  • 分类号:60-73
摘要
为促进高性能结构抗多次多种灾害全寿命性能设计理论研究在我国的发展,详细介绍了该领域的国内外研究现状并建立了其基本研究框架。对高性能结构在全寿命周期内可能遭受的多种灾害单独作用和联合作用的发生概率模型的研究成果进行了阐述,以碳化腐蚀作用和风致疲劳作用为例,论述了在结构全寿命周期内由环境作用引起材料及构件退化的时变模型研究现状,为开展多次多种灾害作用下高性能结构的全寿命性能分析研究提供了方向,并系统介绍了多种灾害作用下结构易损性分析方法和考虑灾害损失成本的结构全寿命抗灾性能优化设计方法的研究进展。基于全寿命周期的结构抗多次多种灾害性能设计方法,能够合理地解决传统设计方法中未考虑多种灾害联合作用和结构性能退化问题,对于建筑结构设计领域的发展具有重要意义。
        To improve the development of life-cycle multihazard-based design theory for high-performance structures in China, the research progress of this field was summarized and the research framework was systematically set up. The researches on the probabilistic occurrence models of individual hazard and multiple hazards were elaborated. The analytical models concerning the environmental effects on the time-variant deterioration of materials and structural component were summarized by taking the carbonization corrosion and wind induced fatigue as examples, which were conducive to guide the life-cycle performance assessment of high-performance structures subjected to multiple hazards. Moreover, the research status of the fragility analysis and the life-cycle cost based optimization design approach for high-performance structures were discussed in detail. The combined effects of multiple hazards and the lifetime deterioration of structural performance, which are neglected in the traditional specifications, can be rationally included in the life-cycle multihazard-based structural analysis and design methodology, which is of great significance for the development of building structural design.
引文
[1] 聂建国. 我国结构工程的未来:高性能结构工程[J].土木工程学报,2016,49(9):1-8.(NIE Jianguo. The future of structural engineering in China:high-performance structural engineering[J]. China Civil Engineering Journal,2016,49(9):1-8.(in Chinese))
    [2] 李忠献. 国家重点研发计划“绿色建筑及建筑工业化”:高性能结构体系抗灾性能与设计理论研究项目正式启动[Z]. 建筑结构学报, 2016,37(9):158.
    [3] VIDAL T, CASTEL A, FRAN?OIS R. Corrosion process and structural performance of a 17 year old reinforced concrete beam stored in chloride environment[J]. Cement and Concrete Research, 2007, 37(11):1551-1561.
    [4] PENG J, STEWART M G. Carbonation-induced corrosion damage and structural safety for concrete structures under enhanced greenhouse conditions[D]. Newcastle:University of Newcastle, 2008.
    [5] EKOLU S O. A review on effects of curing, sheltering, and CO2 concentration upon natural carbonation of concrete[J]. Construction & Building Materials, 2016, 127:306-320.
    [6] 郑山锁, 左英, 张晓辉,等. 酸性大气环境下多龄期平面钢框架结构抗震性能试验研究[J]. 工程力学, 2017, 34(9):73-82. (ZHENG Shansuo, ZUO Ying, ZHANG Xiaohui, et al. Experimental research on the seismic behavior of multi-aged planar steel frames under acidic atmospheric environment[J]. Engineering Mechanics, 2017, 34(9):73-82.(in Chinese))
    [7] 郑山锁, 商效瑀, 张奎,等. 冻融循环作用后再生混凝土砖墙体抗震性能试验研究[J]. 建筑结构学报, 2015, 36(3):64-70. (ZHENG Shansuo, SHANG Xiaoyu, ZHANG Kui, et al. Experimental study on seismic behavior of recycled concrete brick walls under freeze-thaw cycles[J]. Journal of Building Structures, 2015, 36(3):64-70.(in Chinese))
    [8] ARUNACHALAM S, KAMATCHI P, RAJU K R, et al. Methodology for deriving multihazard factors for design base shear of buildings for wind and earthquake hazard for peninsular India[J]. Journal of Structural Engineering, 2013, 40(4):333-343.
    [9] AZADEH Alipour, BEHROUZ Shafei, MASANOBU Shinozuka. Reliability-based calibration of load and resistance factors for design of RC bridges under multiple extreme events: scour and earthquake[J]. Journal of Bridge Engineering,2013,18(5):362-371.
    [10] CORNELL C A. Engineering seismic risk analysis[J]. Bulletin of the Seismological Society of America,1968, 58(5):1583-1606.
    [11] MAYNE J R. The estimation of extreme winds[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1979, 5(1/2):109-137.
    [12] OMORI F. On the aftershocks of earthquakes[J]. Journal of the College of Science,1894,7(3):111-200.
    [13] BORGES J F. Structural safety[M]. Paris: Laboratorio Nacional de Engenharia Civil, 1971.
    [14] TURKSTRA C J, MADSEN H. Load combinations in codified structural design[J]. Journal of Structural Engineering, 1980,106(12): 2527-2543.
    [15] WEN Y K. Statistical combination of extreme loads[J]. Journal of the Structural Division, 1977, 103(5):1079-1093.
    [16] VU K A T, STEWART M G. Structural reliability of concrete bridges including improved chloride-induced corrosion models[J]. Structural Safety, 2000, 22(4):313-333.
    [17] LEE K H, ROSOWSKY D V. Fragility analysis of woodframe buildings considering combined snow and earthquake loading[J].Structural Safety,2006,28(3):289-303.
    [18] LI Y, ELLINGWOOD B R. Framework for multihazard risk assessment and mitigation for wood-frame residential construction[J]. Journal of Structural Engineering, 2009, 135(2):159-168.
    [19] KAMESHWAR S, PADGETT J E. Multi-hazard risk assessment of highway bridges subjected to earthquake and hurricane hazards[J]. Engineering Structures, 2014, 78: 154-166.
    [20] FAGHIHMALEKI H, NEJATI F, MIRZAGOLTABAR-ROSHAN A, et al. An evaluation of multi-hazard risk subjected to blast and earthquake loads in RC moment frame with shear wall[J]. Journal of Engineering Science & Technology, 2017,12(3):636-647.
    [21] CHANG S E, SHINOZUKA M. Life cycle cost analysis with natural hazard risk[J]. Journal of Infrastructure Systems, 1996, 2(3): 118-126.
    [22] 王光远, 季天健, 张鹏. 抗震结构全寿命预期总费用最小优化设计[J]. 土木工程学报, 2003, 36(6):1- 6. (WANG Guangyuan, JI Tianjian, ZHANG Peng. An optimal design for total lifetime cost of a seismic structures[J]. China Civil Engineering Journal, 2003, 36(6): 1- 6.(in Chinese))
    [23] WEN Y K, KANG Y J. Minimum building life-cycle cost design criteria: Ⅰ: methodology[J]. Journal of Structural Engineering, 2001, 127(3):330-337.
    [24] WEN Y K, KANG Y J. Minimum building life-cycle cost design criteria: Ⅱ: applications[J]. Journal of Structural Engineering, 2001, 127(3):338-346.
    [25] FRANGOPOL D M, LIN K Y, ESTES A C. Life-cycle cost design of deteriorating structures[J]. Journal of Structural Engineering, 1997, 123(10):1390-1401.
    [26] GUTENBERG B,RICHTER C F.Frequency of earthquakes in California[J].Bulletin of the Seismological Society of America,1944,34(4):859-880.
    [27] KENNEDY R C, SHORT S A. Basis for seismic provisions of DOE-STD-1020[R].Livermore, California: Lawrence Livermore National Laboratory, 1994.
    [28] 建筑抗震设计规范: GB 50011—2010[S]. 北京: 中国建筑工业出版社, 2010. (Code for seismic design of buildings: GB 50011—2010[S]. Beijing: China Architecture & Building Press, 2010.(in Chinese))
    [29] 高小旺,鲍霭斌. 地震作用的概率模型及其统计参数[J]. 地震工程与工程振动, 1985, 5(1): 13-22. (GAO Xiaowang, BAO Aibin. Probabilistic model and its statistical parameters for seismic load[J]. Earthquake Engineering and Earthquake Vibration, 1985, 5(1): 13-22.(in Chinese))
    [30] 胡聿贤.地震危险性分析的综合概率法[M]. 北京:地震出版社, 1990. (HU Yuxian. Comprehensively probabilistic method for seismic hazard analysis[M]. Beijing: Seismological Press, 1990.(in Chinese))
    [31] 周克森, 吴鹏, 王东霞. 地震危险性分析多维不确定性的复合概率模型(I)[J].地震工程与工程振动, 1991, 11(1):19-29. (ZHOU Kesen, WU Peng, WANG Dongxia. A complex probabilistic model of multiple dimension uncertainties in seismic hazard analysis(I)[J]. Earthquake Engineering and Engineering Vibration, 1991, 11(1):19-29.(in Chinese))
    [32] ANAGNOS T, KIREMIDJIAN A S. Stochastic time-predictable model for earthquake occurrences[J]. Bulletin of the Seismological Society of America, 1984, 74(6): 2593-2611.
    [33] 周锡元, 苏经宇,王广军. 以 Neyman-Scott 过程为基础的地震危险性分析[J].地震工程与工程振动, 1985, 5 (2):1-10. (ZHOU Xiyuan, SU Jingyu, WANG Guangjun. Seismic hazard analysis on the basis of Neyman-Scott model[J]. Earthquake Engineering and Engineering Vibration, 1985, 5 (2):1-10.(in Chinese))
    [34] 王时标, 白广忱, 王光远. 断层地震危险性分析的双限随机应力水平模型[J]. 地震学报, 1993, 15 (4):477- 483. (WANG Shibiao, BAI Guangchen, WANG Guangyuan. Fault seismic hazard analysis of randomized double limit stress level model[J]. Acta Seismological Sinica, 1993, 15 (4): 477- 483.(in Chinese))
    [35] ULGEN K, HEPBASLI A. Determination of Weibull parameters for wind energy analysis of Izmir Turkey[J]. International Journal of Energy Research, 2002, 26(6): 495-506.
    [36] STEWART D A, ESSENWANGER O M. Frequency distribution of wind speed near the surface[J]. Journal of Applied Meteorology, 1978, 17(11): 1633-1642.
    [37] TAKLE E S, BROWN J M. Note on the use of Weibull statistics to characterize wind-speed data[J]. Journal of Applied Meteorology, 1978, 17(4): 556-559.
    [38] BASILE S, BURLON R, MORALES F. Joint probability distributions for wind speed and direction. A case study in Sicily[C]// International Conference on Renewable Energy Research and Applications. Palermo, Italy: IEEE, 2016:1591-1596.
    [39] US Army Engineer Waterways Experiment Station. Fundamental of protective design for conventional weapons:TM 5-855-1[S]. Vicksburg: US Army Engineer Waterways Experiment Station, 1986.
    [40] US Army, Navy and Air Force, US Government Printing Office. Structures to resist the effects of accidental explosion:TM 5-1300[S]. Washington DC: US Army, Navy and Air Force, US Government Printing Office, 1990.
    [41] 周惠兰, 房桂荣, 章爱娣,等. 地震震型判断方法探讨[J]. 地震工程学报, 1980, 2(2):45-59.(ZHOU Huilan, FANG Guirong, ZHANG Aidi, et al. Discussion on seismic type judgment method[J]. China Earthquake Engineering Journal, 1980, 2(2):45-59.(in Chinese))
    [42] 吴开统. 地震序列概论[M]. 北京:北京大学出版社, 1990. (WU Kaitong. An introduction to earthquake sequence[M]. Beijing: Peking University Press,1990.(in Chinese))
    [43] OGATA Y. Statistical models for earthquake occurrence and residual analysis for point processes[J]. Journal of the American Statistical Association, 1988, 83(401): 9-27.
    [44] GALLOVI F, BROKE?OVá J. Probabilistic aftershock hazard assessment I: numerical testing of methodological features[J]. Journal of Seismology, 2008, 12(1): 53- 64.
    [45] SHCHERBAKOV R, TURCOTTE D L, RUNDLE J B. A generalized Omori’s law for earthquake aftershock decay[J].Geophysical Research Letters,2004,31(11): 1-5.
    [46] 吴波, 欧进萍. 主震与余震的震级统计关系及其地震动模型参数[J]. 地震工程与工程振动, 1993, 13(3): 28-35. (WU Bo, OU Jinping. Statistical relationship between magnitudes of main shock and after shock and parameters of earthquake ground motion[J]. Earthquake Engineering and Engineering Vibration, 1993, 13(3): 28-35.(in Chinese))
    [47] 蒋海昆, 曲延军, 李永莉,等. 中国大陆中强地震余震序列的部分统计特征[J]. 地球物理学报, 2006, 49(4): 1110-1117. (JIANG Haikun, QU Yanjun, LI Yongli, et al. Some statistic features of aftershock sequences in Chinese mainland[J]. Chinese Journal of Geophysics, 2006, 49(4): 1110-1117.(in Chinese))
    [48] IERVOLINO I, GIORGIO M, POLIDORO B. Sequence-based probabilistic seismic hazard analysis[J]. Bulletin of the Seismological Society of America, 2014, 104(2): 1006-1012.
    [49] 孙得璋. 地震和重卡车荷载作用下桥梁多灾害设计理论研究[D]. 哈尔滨:中国地震局工程力学研究所, 2012. (SUN Dezhang. Study on multiple hazards design theory for bridge under earthquakes and heavy truck loads[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration,2012.(in Chinese))
    [50] MIRANDA E. Strength reduction factors in performance-based design[C]// Proceedings of EERC-CUREe Symposium. Berkeley, CA: Earthquake Engineering Research Center, University of California, 1997: 125-132.
    [51] HONG X, GU M. Probability model and solution on earthquake effects combination in along wind resistant design of tall-flexible buildings[J]. Applied Mathematics and Mechanics, 2006, 27(5): 627- 636.
    [52] LIANG Z, LEE G C. Towards multiple hazard resilient bridges: a methodology for modeling frequent and infrequent time-varying loads: part Ⅰ: comprehensive reliability and partial failure probabilities[J]. Earthquake Engineering and Engineering Vibration, 2012, 11(3): 293-301.
    [53] LIANG Z, LEE G C. Towards multiple hazard resilient bridges: a methodology for modeling frequent and infrequent time-varying loads: part Ⅱ: examples for live and earthquake load effects[J]. Earthquake Engineering and Engineering Vibration, 2012, 11(3): 303-311.
    [54] ZUO H, BI K, HAO H. Using multiple tuned mass dampers to control offshore wind turbine vibrations under multiple hazards[J]. Engineering Structures, 2017, 141: 303-315.
    [55] 海港水文规范: JTS 145-2—2013[S]. 北京: 人民交通出版社, 2013. (Code of hydrology for sea harbor: JTS 145-2—2013[S]. Beijing: China Communications Press, 2013.(in Chinese))
    [56] 周道成,段忠东. 耿贝尔逻辑模型在极值风速和有效波高联合概率分布中的应用[J]. 海洋工程, 2003, 21(2): 45-51. (ZHOU Daocheng, DUAN Zhongdong. The Gumbel-logistic model for joint probability distribution of extreme value wind speeds and effective wave heights[J]. The Ocean Engineering, 2003, 21(2): 45-51.(in Chinese))
    [57] DITLEVSEN O. Stochastic model for joint wave and wind loads on offshore structures[J]. Structural Safety, 2002, 24(2): 139-163.
    [58] LI C Q, MELCHERS R E. Time-dependent risk assessment of structural deterioration caused by reinforcement corrosion[J]. ACI Structural Journal, 2006, 102(5): 754-762.
    [59] BROOMFIELD J P. Corrosion of steel in concrete: understanding, investigation and repair[M]. London: CRC Press, 2002.
    [60] HAN S H, PARK W S, YANG E I. Evaluation of concrete durability due to carbonation in harbor concrete structures[J]. Construction and Building Materials, 2013, 48: 1045-1049.
    [61] MEHTA P K, MONTEIRO P J M. Concrete micro structure, properties and materials[M]. Chennai: Indian Concrete Institute, 1997.
    [62] SUDRET B, DEFAUX G, PENDOLA M. Stochastic evaluation of the damage length in RC beams submitted to corrosion of reinforcing steel[J]. Civil Engineering and Environmental Systems, 2007, 24(2): 165-178.
    [63] THIERY M, VILLAIN G, DANGLA P. Investigation of the carbonation front shape on cementitious materials: effects of the chemical kinetics[J]. Cement and Concrete Research, 2007, 37(7):1047-1058.
    [64] PAPADAKIS V G. Effect of supplementary cementing materials on concrete resistance against carbonation and chloride ingress[J]. Cement and Concrete Research, 2000, 30(2):291-299.
    [65] JSCE. Concrete standard specification: part of durability[S]. Japan: JSCE, 1999.
    [66] HO D W S, LEWIS R K. Carbonation of concrete and its prediction[J]. Cement and Concrete Research, 1987, 17 (3): 489-504.
    [67] 金伟良, 鄢飞,张亮. 考虑混凝土碳化规律的钢筋锈蚀率预测模型[J]. 浙江大学学报(工学版), 2000, 34(2): 158-163. (JIN Weiliang, YAN Fei, ZHANG Liang. A predetermined model of steel bar corrosion ratio considered of concrete carbonation model[J]. Journal of Zhejiang University (Engineering Science), 2000, 34(2): 158-163.(in Chinese))
    [68] MOLINA F, ALONSO C, ANDRADE C. Cover cracking as a function of rebar corrosion: part 2: numerical model[J]. Materials and Structures, 1993, 26(9):532-548.
    [69] PENG L, STEWART M G. Climate change and corrosion damage risks for reinforced concrete infrastructure in China[J]. Structure and Infrastructure Engineering, 2016, 12(4): 499-516.
    [70] LIU T, WEYERS R W. Modeling the dynamic corrosion process in chloride contaminated concrete structures[J]. Cement and Concrete Research, 1998, 28(3):365-379.
    [71] CAIRNS J, GIOVANNI A. Mechanical properties of corrosion damage reinforcement[J]. ACI Materials Journal, 2005, 102(4):256-264.
    [72] CAPé M. Residual service-life assessment of existing RC structures[D]. Gothenburg: Chalmers University of Technology, 1999.
    [73] FANG C, LUNDGREN K, CHEN L. Corrosion influence on bong in reinforced concrete[J]. Cement and Concrete Research, 2004, 34(11): 2159-2167.
    [74] 成虎, 李宏男, 王东升,等. 考虑锈蚀黏结退化的钢筋混凝土桥墩抗震性能分析[J]. 工程力学, 2017,34(12):48-58. (CHENG Hu, LI Hongnan, WANG Dongsheng, et al. Seismic performance analysis of reinforced concrete bridge column considering bond deterioration caused by chloride ion induced corrosion[J]. Engineering Mechanics, 2017,34(12):48-58.(in Chinese))
    [75] 陈艾荣, 陈华婷, 项海帆. 大跨桥梁风致抖振疲劳可靠度近似分析及寿命估算[J]. 土木工程学报, 1999, 32(3): 28-33. (CHEN Airong, CHEN Huating, XIANG Haifan. Wind-induced buffeting fatigue reliability analysis and life estimation of long-span bridges[J]. China Civil Engineering Journal, 1999, 32(3): 28-33.(in Chinese))
    [76] 张春涛. 腐蚀环境和风振疲劳耦合作用下输电塔线体系疲劳性能研究[D]. 重庆: 重庆大学, 2012. (ZHANG Chuntao. Study on fatigue of transmission tower-line coupled system with the coupling effect between corrosion and fatigue vibration[D]. Chongqing:Chongqing University,2012.(in Chinese))
    [77] FLAMAND O, BIETRY J, BARRE C, et al. Fatigue calculation on the roof sustaining cables of a large stadium in Paris[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1996, 64(2/3): 127-134.
    [78] DOLINSKI K. Fatigue crack growth with retardation under stationary stochastic loading[J]. Engineering Fracture Mechanics, 1987, 27(3):279-290
    [79] IDRIS Y, OZBAKKALOGLU T. Flexural behavior of FRP-HSC-steel composite beams[J]. Thin-Walled Structures, 2014, 80: 207-216.
    [80] 林迟. 基于结构全寿命设计需求的环境作用与结构性能退化研究[D]. 哈尔滨:哈尔滨工业大学, 2010. (LIN Chi. Study on environmental actions and performance degradation of structures for the needs of structural life-cycle design[D]. Harbin: Harbin Institute of Technology, 2010.(in Chinese))
    [81] WHITMAN R V, REED J W, HONG S T. Earthquake damage probability matrices[C]// Proceedings of the 5th World Conference on Earthquake Engineering. Italy: Palazzo Del Congressi, 1973: 2531-2540.
    [82] SABETTA F, GORETTI A, LUCANTONI A. Empirical fragility curves from damage surveys and estimated strong ground motion[C]// Proceedings of the 11th European Conference on Earthquake Engineering. Paris, France: France Association of Earthquake Engineering, 1998.
    [83] Federal Emergency Management Agency. Multi-hazard loss estimation methodology: earthquake model: HAZUS-MH MR1 technical manual[R]. Washington DC: Federal Emergency Management Agency, 2003.
    [84] 于晓辉. 钢筋混凝土框架结构的概率地震易损性与风险分析[D]. 哈尔滨: 哈尔滨工业大学, 2012. (YU Xiaohui. Probabilistic seismic fragility and risk analysis of reinforced concrete frame structures[D]. Harbin: Harbin Institute of Technology, 2012.(in Chinese))
    [85] SMITH M A, CARACOGLIA L. A Monte Carlo based method for the dynamic “fragility analysis” of tall buildings under turbulent wind loading[J]. Engineering Structures, 2011, 33(2):410- 420.
    [86] POURZEYNALI S, DATTA T K. Reliability analysis of suspension bridges against flutter[J]. Journal of Sound and Vibration, 2002, 254(1):143-162.
    [87] LI Y, ELLINGWOOD B R. Hurricane damage to residential construction in the US: importance of uncertainty modeling in risk assessment[J]. Engineering Structures, 2006, 28(7):1009-1018.
    [88] NOWAK A S, COLLINS K R. Reliability of structures[M]. London: McGraw-Hill, 2000.
    [89] KROESE D P, TAIMRE T, BOTEV Z I. Handbook of monte carlo methods[M]. New York: John Wiley & Sons, 2013.
    [90] STEIN M. Large sample properties of simulations using Latin hypercube sampling[J]. Technometrics, 1987, 29(2): 143-151.
    [91] WANG S C. Artificial neural network[M]. Berlin: Springer, 2003: 81-100.
    [92] ELWOOD K J. A framework for performance-based engineering: SEAOC VISON 2000[R]. California: Structural Engineering Association of California, 1995.
    [93] SHAPIROD, ROJAHN C, REAVELEY L D, et al. NEHRP commentary on the guidelines for the rehabilitation of buildings:FEMA 273[R]. Washington DC: Federal Emergency Management Agency, 1996.
    [94] GHOBARAH A, ABOU-ELFATH H, BIDDAH A. Response-based damage assessment of structures[J]. Earthquake Engineering and Structural Dynamics, 1999, 28(1): 79-104.
    [95] 李应斌,刘伯权,史庆轩. 结构的性能水准与评价指标[J]. 世界地震工程, 2003,19(2):132-137. (LI Yingbin, LIU Boquan, SHI Qingxuan. Perfbrmance levels and estimation indices of structures[J]. World Earthquake Engineering, 2003, 19(2): 132-137. (in Chinese))
    [96] CHOI E, DESROCHES R, NIELSON B. Seismic fragility of typical bridges in moderate seismic zones[J]. Engineering Structures, 2004, 26(2):187-199.
    [97] CORNELL C A, JALAYER F, HAMBURGER R O, et al. Probabilistic basis for 2000 SAC federal emergency management agency steel moment frame guidelines[J]. Journal of Structural Engineering, 2002, 128(4): 526-533.
    [98] 陈炫维, 李宏男, 王东升,等. 主余震下近海钢筋混凝土桥墩全寿命抗震分析[J]. 地震工程与工程振动, 2015, 35(4): 145-154. (CHEN Xuanwei, LI Hongnan, WANG Dongsheng, et al. Life-cycle seismic performance analysis of offshore RC bridge piers under mainshock and aftershock[J]. Earthquake Engineering and Engineering Dynamics, 2015, 35(4): 145-154.(in Chinese))
    [99] MARDFEKRI M, GARDONI P. Multi-hazard reliability assessment of offshore wind turbines[J]. Wind Energy, 2015, 18(8):1433-1450.
    [100]MODICA A, STAFFORD P J. Vector fragility surfaces for reinforced concrete frames in Europe[J]. Bulletin of Earthquake Engineering, 2014, 12(4):1725-1753.
    [101]MENSAH A F, DUENAS-OSORIO L, PROWELL I, et al. Probabilistic combination of earthquake and operational loads for wind turbines[C]// 15th World Conference on Earthquake Engineering. Tokyo: International Association of Earthquake Engineering (IAEE), 2012: 1-11.
    [102]ELLINGWOOD B R, WEN Y K. Risk-benefit-based design decisions for low-probability high consequence earthquake events in mid-America[J]. Progress in Structural Engineering and Materials, 2005, 7(2):56-70.
    [103]LAGAROS N D. Life-cycle cost analysis of design practices for RC framed structures[J]. Bulletin of Earthquake Engineering, 2007, 5(3):425- 442.
    [104]GENCTURK B. Life-cycle cost assessment of RC and ECC frames using structural optimization[J]. Earthquake Engineering and Structural Dynamics, 2013, 42(1): 61-79.
    [105]ARDITI D A, MESSIHA H M. Life-cycle costing in municipal construction projects[J]. Journal of Infrastructure Systems, 1996, 2(1):5-14.
    [106]吕大刚, 于晓辉, 宋鹏彦, 等. 抗震结构最优设防水平决策与全寿命优化设计的简化易损性分析方法[J]. 地震工程与工程振动, 2009, 29(4):23-32. (LV Dagang, YU Xiaohui, SONG Pengyan, et al. Simplified fragility analysis methods for optimal protection level decision-making and minimum life-cycle cost design of a seismic structures[J]. Earthquake Engineering and Engineering Dynamics, 2009, 29(4):23-32.(in Chinese))

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700