用户名: 密码: 验证码:
具有多物理特性的X射线脉冲星导航地面验证系统
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Ground verification system of X-ray pulsar navigation with multi-physical properties
  • 作者:方海燕 ; 丛少鹏 ; 孙海峰 ; 李小平 ; 苏剑宇 ; 张力 ; 沈利荣
  • 英文作者:Fang Hai-Yan;Cong Shao-Peng;Sun Hai-Feng;Li Xiao-Ping;Su Jian-Yu;Zhang Li;Shen Li-Rong;School of Aerospace Science and Technology, Xidian University;
  • 关键词:X射线脉冲星导航 ; 地面验证系统 ; 多物理特性 ; 信号模拟
  • 英文关键词:X-ray pulsar navigation;;ground verification system;;multi-physical properties;;signal simulation
  • 中文刊名:WLXB
  • 英文刊名:Acta Physica Sinica
  • 机构:西安电子科技大学空间科学与技术学院;
  • 出版日期:2019-04-02 13:16
  • 出版单位:物理学报
  • 年:2019
  • 期:v.68
  • 语种:中文;
  • 页:WLXB201908030
  • 页数:10
  • CN:08
  • ISSN:11-1958/O4
  • 分类号:264-273
摘要
导航地面验证是X射线脉冲星导航研究必不可少的环节.针对导航算法验证需要真实连续的脉冲星信号的需求,同时避免X射线调制及探测难度大、成本高的问题,提出了一种基于可见光源的X射线脉冲星导航地面验证系统.该系统利用太阳系质心处脉冲星信号模型和航天器轨道信息,建立航天器处实时光子到达速率函数,再通过硬件系统转换成电压信号,利用该电压控制线性光源输出,最后经衰减、探测及甄别后获得航天器处的实时光子到达时间序列.该时间序列不仅具有导航脉冲星的轮廓特性、自转特性,还包括空间传播时间效应及宇宙X射线背景.本系统利用半物理装置对可见光进行调制及衰减,实时判断轨道各位置处导航脉冲星的可见性,实现X射线脉冲星信号传播过程的模拟.该系统提供四路可控输出信号,支持多种导航模式的验证.仿真系统的性能分析和功能验证结果表明,该系统具有良好的性能,可提供真实便捷的地面验证环境.
        Navigation ground verification is an essential part of X-ray pulsar navigation(XPNAV) research. Aiming at the need of real and continuous pulsar signals for navigation algorithm verification, and to avoid the difficulties and high costs of X-ray modulation and detection, we propose an XPNAV ground verification system based on visible light source. In this system, the pulsar signal model at the solar system barycenter and the orbit information are used to establish the real-time photon arrival rate function at a spacecraft, and then the rate function is digitized and converted into voltage signal by the designed hardware system to drive a linear light source. After the processes of light attenuation, signal detection and pulse discrimination are experienced,the real-time photon time of arrivals(TOAs) at a spacecraft can be achieved. These photon TOAs contain characteristics of the pulsar profiles and frequency, the time propagation effect in the solar system, and cosmic X-ray background. The system uses semi-physical devices to modulate and attenuate visible light, and judges whether the spacecraft can observe the navigation pulsar according to the real position, thereby realizing the simulation of X-ray propagation in space. At present, the detection method of pulsar observation with single detector include detection of single pulsar, time division detection of multiple pulsars, and simultaneous detection of multiple pulsars. The system has four channels, each of which has three output modes mentioned above, and can support the verification of multiple navigation modes. This system consists of signal simulator and controller, single photon generator and detector, single photon screening and time tagging, and navigation algorithm verification. This paper presents the testing results of the system characteristics, the authenticity of the simulated photon arrival time series and the navigation verification. Monte Carlo experiments show that the recording accuracy of photon arrival time is 10 ns and the delays of the four channels are(11 ± 2),(15 ± 4),(14 士 3),and(16 士 4) μs, respectively. The multi-physical properties of simulated photon arrival time series are introduced in detail, including photon flux, shape of observation profile, pulsar frequency characteristics and Doppler shift. The position and velocity errors of autonomous navigation algorithm test are 13.587 km and14.277 m-s~(-1), respectively, with an orbital altitude 26610 km and within 10 h. The ground verification system adopts master-slave control mode, the master computer mainly implements parameter setting and navigation algorithm verification, and the slave computer mainly carry out pulsar signal simulation. The communication based on TCP/IP protocol is applied to realize parameter transmission and real-time control between the master and slave computers in navigation verification process. The results of performance and functional test show that the system is available to accomplish the simulation of photon TOAs of X-ray pulsars at a spacecraft in real time and implement the ground verification of XPNAV.
引文
[1] Sheikh S I 2005 Ph. D. Dissertation(USA:University of Maryland)
    [2] Su Z, Xu L P, Wang T 2011 Acta Phys. Sin. 60 119701(in Chinese)[苏哲,许录平,王婷2011物理学报60 119701]
    [3] Bei X M, Shuai P, Huang L W, Sun H F, Wu Y J, Zhang Q2014 Acta Phys. Sin. 63 219701(in Chinese)[贝晓敏,帅平,黄良伟,孙海峰,吴耀军,张倩2014物理学报63 219701]
    [4] Xue M F, Li X P, Sun H F, Liu B, Fang H Y, Shen L R 2015Acta Phys.Sin. 64 219701(in Chinese)[薛梦凡,李小平,孙海峰,刘兵,方海燕,沈利荣2015物理学报64 219701]
    [5] Hu H J, Zhao B S, Sheng L Z, Yan Q R 2011 Acta Phys. Sin.60 029701(in Chinese)[胡慧君,赵宝升,盛立志,鄢秋荣2011物理学报60 029701]
    [6] Liu L, Zheng W, Tang G J, Sun S M 2012 Journal of National University of Defense Technology 34 10(in Chinese)[刘利,郑伟,汤国建,孙守明2012国防科技大学学报3410]
    [7] Zhou F, Wu G M, Zhao B S, Sheng L Z, Song J, Liu Y A,Yan Q R, Deng N Q, Zhao J J 2013 Acta Phys. Sin. 62119701(in Chinese)[周峰,吴光敏,赵宝升,盛立志,宋娟,刘永安,鄢秋荣,邓宁勤,赵建军2013物理学报62 119701]
    [8] Xu N, Sheng L Z, Zhang D P, Chen C, Zhao B S, Zheng W,Liu C L 2017 Acta Phys.Sin. 66 059701(in Chinese)[徐能,盛立志,张大鹏,陈琛,赵宝升,郑伟,刘纯亮2017物理学报66059701]
    [9] Zhang H, Xu L P 2011 Journal of OptoelectronicsLaser 22905(in Chinese)(in Chinese)[张华,许录平2011光电子.激光22 905]
    [10] Sun H F, Xie K, Li X P, Fang H Y, Liu X P, Fu L Z, Sun H J, Xue M F 2013 Acta Phys. Sin. 62 109701(in Chinese)[孙海峰,谢楷,李小平,方海燕,刘秀平,傅灵忠,孙海建,薛梦凡2013物理学报62 109701]
    [11] Li X P, Xue M F, Fang H Y, Liu B, Sun H F, Liu Y M 2017IEEE Trans. Ind. Electron. 64 1486
    [12] Winternitz L M B, Mitchell J W, Hassouneh M A, Valdez J E, Price S R, Semper S R, Yu W H, Ray P S, Wood K S,Arzoumanian Z, Gendreau K C 2015 IEEE Aerospace Conference Big Sky, MT, USA, March 7-14, 2015 p1
    [13] Sun H F, Bao W M, Fang H Y, Li X P 2014 Acta Phys. Sin.63 069701(in Chinese)[孙海峰,包为民,方海燕,李小平2014物理学报63 069701]
    [14] Zheng S J, Ge M Y, Han D W, Wang W B, Chen Y, Lu F J,Bao T W, Chai J Y, Dong Y W, Feng M Z, He J J, Huang Y,Kong M N, Li H C, Li L, Li Z H, Liu J T, Liu X, Shi H L,Song L M, Sun J C, Wang R J, Wang Y H, Wen X, Wu B B,Xiao H L, Xiong S L, Xu H H, Xu M, Zhang J, Zhang L Y,Zhang L, Zhang X F, Zhang Y J, Zhao Y, Zhang S N2017Scientia Sinica Physica, Mechanica&Astronomica 47120(in Chinese)(in Chinese)[郑世界,葛明玉,韩大炜,王文彬,陈勇,卢方军,鲍天威,柴军营,董永伟,冯旻子,贺健健,黄跃,孔敏南,李汉成,李陆,李正恒,刘江涛,刘鑫,师昊礼,宋黎明,孙建超,王瑞杰,王源浩,文星,吴伯冰,肖华林,熊少林,许寒晖,徐明,张娟,张来宇,张力,张晓峰,张永杰,赵一,张双南2017中国科学:物理学力学天文学47 120]
    [15] Zhang D P, Wang Y D, Jiang K, Zheng W 2018 Journal of Astronautics 39 411(in Chinese)(in Chinese)[张大鹏,王奕迪,姜坤,郑伟2018宇航学报39 411]
    [16] Xu Y T, Gong C L, Hu H J, Zhang Y T, Shao S P, Shi Y F,Song J, Song X L 2018 Spacecraft Engineering 27 114(in Chinese)[徐延庭,宫超林,胡慧君,张玉兔,邵思霈,史钰峰,宋娟,宋晓林2018航天器工程27 114]
    [17] Mitchell J W, Winternitz L M, Hassouneh M A, Price S R,Semper S R, Yu W H, Ray P S, Wolff M T, Kerr M, Wood K S 2018 41st Annual American Astronautical Society(AAS)Guidance and Control Conference Breckenridge, CO, United States, February 1-7, 2018 p1
    [18] Emadzadeh A A, Speyer J L(translated by Hou J W, Yang G, He L, Wu R)2013 Navigation in space by X-ray Pulsars(Bei.jing:National Defend Industry Press)pp15-19(in Chinese)[艾玛德扎赫,斯派尔著(侯建文,阳光,贺亮,吴蕊译)2013 X射线脉冲星导航(北京:国防工业出版社)第15-19页]
    [19] Chen P T, Speyer J L, Bayard D S, Majid W A 2017 J. Guid.Control Dyn. 40 2237
    [20] Mao Y 2009 Ph. D. Dissertation(Zhengzhou:The PLA Information Engineering University)(in Chinese)[毛悦2009博士学位论文(郑州:解放军信息工程大学)]
    [21] Margaret A L, Victoria M K 2011 Astrophys. J. 742 31
    [22] Fang H Y, Liu B, Li X P, Sun H F, Xue M F, Shen L R, Zhu J P 2016 Acta Phys.Sin. 65 119701(in Chinese)[方海燕,刘兵,李小平,孙海峰,薛梦凡,沈利荣,朱金鹏2016物理学报65119701]
    [23] de Jager O C, Swanepoel J W H, Raubenheimer B C 1989Astron. Astrophys. 221 180
    [24] Sheikh S I, Pines D J, Ray P S, Wood K S, Lovellette M N,Wolff M T 2006 J. Guid. Control Dyn. 29 49

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700