用户名: 密码: 验证码:
复杂工业过程智能优化决策系统的现状与展望
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research Progress and Prospects of Intelligent Optimization Decision Making in Complex Industrial Process
  • 作者:丁进良 ; 杨翠娥 ; 陈远东 ; 柴天佑
  • 英文作者:DING Jin-Liang;YANG Cui-E;CHEN Yuan-Dong;CHAI Tian-You;State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University;Research Center of Automation, Northeastern University;
  • 关键词:复杂工业过程 ; 全流程优化决策 ; 协同优化 ; 智能优化决策 ; 智能制造
  • 英文关键词:Complex process industrial;;whole process optimization decision making;;collaborative optimization;;intelligent optimization decision-making;;intelligent manufacturing
  • 中文刊名:MOTO
  • 英文刊名:Acta Automatica Sinica
  • 机构:东北大学流程工业综合自动化国家重点实验室;东北大学自动化研究中心;
  • 出版日期:2018-11-22 13:27
  • 出版单位:自动化学报
  • 年:2018
  • 期:v.44
  • 基金:国家自然科学基金(61525302,61590922);; 国家工信部智能制造专项项目(20171122-6);; 沈阳市双百工程项目(Y17-0-004)资助~~
  • 语种:中文;
  • 页:MOTO201811003
  • 页数:13
  • CN:11
  • ISSN:11-2109/TP
  • 分类号:13-25
摘要
流程工业是制造业的重要组成部分,是我国国民经济和社会发展的重要支柱产业.新一代信息技术和人工智能技术为流程工业的发展带来新的挑战和机遇.只有与流程工业的特点与目标密切结合,充分利用大数据,将人工智能、移动互联网、云计算、建模、控制与优化等信息技术与工业生产过程的物理资源紧密融合与协同,实现流程工业智能优化制造,才可能实现流程工业的跨越式发展.本文聚焦流程工业的复杂生产过程,从其智能优化决策系统的角度,描述了复杂工业过程优化决策系统的问题、回顾总结了复杂工业过程全流程优化决策系统的现状,分析了智能优化决策系统的必要性,提出了智能优化决策系统的发展目标及愿景,并对智能优化决策系统的下一步重点研究方向进行了展望.
        Process industry is an important part of manufacturing industry and an important pillar industry of national economic and social development in China. The new generation of information technology and artificial intelligence technology bring new challenges and opportunities to the development of process industry. To realize the leapfrog development of intelligent manufacturing of process industry, we need to closely combine with the characteristics and objectives of process industry and make full use of big data. We also need the integration and coordination of artificial intelligence, information technology, mobile internet, cloud computing, modeling, control and optimization and the physical resources of industrial production process. From the point of view of intelligent optimal decision-making system for complex industrial process, this paper describes the decision-making process, decision-making content and problems of complex industrial process. It reviews and summarizes the status of the decision-making system for the whole process of complex industries,and analyzes on the necessity of intelligent optimal decision-making system. And the development vision and goal of intelligent optimal decision-making system have been proposed. Finally, the future direction of intelligent optimization decision system is prospected.
引文
1 Chai Tian-You, Ding Jin-Liang. Intelligent optimized manufacturing in process industry. Chinese Engineering Science. 2018, DOI:10.15302/J-SSCAE-2018.04.007(柴天佑,丁进良.流程工业智能优化制造.中国工程科学, 2018,DOI:10.15302/J-SSCAE-2018.04.007)
    2 Chai Tian-You, Ding Jin-Liang, Gui Wei-Hua, Qian Feng.Research on the development strategy of knowledge automation of big data and manufacturing process. Beijing:Science Press, 2018.(柴天佑,丁进良,桂卫华,钱锋.大数据与制造流程知识自动化发展战略研究.北京:科学出版社, 2018.)
    3 Gui Wei-Hua, Wang Cheng-Hong, Xie Yong-Fang, Song Su, Meng Qing-Feng, Ding Jin-Liang. The necessary way to realize great-leap-forward development of process industries. Bulletin of National Natural Science Foundation of China. 2015, 29(5):337-342(桂卫华,王成红,谢永芳,宋苏,孟庆峰,丁进良.流程工业实现跨越式发展的必由之路.中国科学基金, 2015, 29(5):337-342)
    4 Qian F, Zhong W, Du W. Fundamental theories and key technologies for smart and optimal manufacturing in the process industry. Engineering, 2017, 3(2):154-160
    5 Chai Tian-You. The challenge of control and optimization theory method for production and manufacturing process optimization control. Acta Automatica Sinica, 2009,35(6):641-649(柴天佑.生产制造全流程优化控制对控制与优化理论方法的挑战.自动化学报, 2009, 35(6):641-649)
    6 Chai Tian-You, Ding Jin-Liang, Wang Hong, Su ChunYi. Hybrid intelligent optimization control for complex industrial processes. Acta Automatica Sinica, 2008, 34(5):505-515(柴天佑,丁进良,王宏,苏春翌.复杂工业过程运行的混合智能优化控制方法.自动化学报, 2008, 34(5):505-515)
    7 Young R E. Petroleum refining process control and realtime optimization. Control Systems IEEE, 1999, 26(6):73-83
    8 Ding Jin-Liang. Study on optimization decision method of whole process operation index under dynamic environment[Ph. D. dissertation], Northeastern University, China,2012.(丁进良.动态环境下选矿生产全流程运行指标优化决策方法研究[博士学位论文],东北大学,中国, 2012.)
    9 Chai Tian-You, Ding Jin-Liang, Xu Quan, Yue Heng.Implementation system technology of mineral processing manufacturing based on Internet of things. Journal of Internet of Things, 2018,(01):1-16(柴天佑,丁进良,徐泉,岳恒.基于物联网的选矿制造执行系统技术.物联网学报, 2018,(01):1-16)
    10 Chai T, Ding J, Yu G, Wang H. Integrated optimization for the automation systems of mineral processing.IEEE Transactions on Automation Science and Engineering, 2014, 11(4):965-982
    11 Chai Tian-You. Operation optimization and feedback control of complex industrial processes. Acta Automatica Sinica, 2013, 39(11):1744-1757(柴天佑.复杂工业过程运行优化与反馈控制.自动化学报, 2013,39(11):1744-1757)
    12 Mehmet M, Francis J. Doyle III. Real-time optimization of the pulp mill benchmark problem. Computers&Chemical Engineering, 2008, 32(4-5):789-804
    13 Wang Yue. Research on production planning and scheduling under uncertain environment[Ph. D. dissertation],Zhejiang University, China, 2016.(王越.不确定环境下生产计划和调度的研究[博士学位论文],浙江大学,中国, 2016.)
    14 Hou Yan. Optimization of short-term production scheduling for oil refinery[Ph. D. dissertation], Guangdong University of Technology, China, 2016.(侯艳.炼油厂原油处理短期生产计划调度优化[博士学位论文],广东工业大学,中国, 2016.)
    15 Zhao Xiao-Qiang. Research on refinery production scheduling problem[Ph. D. dissertation], Zhejiang University, China, 2005.(赵小强.炼厂生产调度问题研究[博士学位论文],浙江大学,中国, 2005.)
    16 Velez S, Maravelias C T. Multiple and nonuniform time grids in discrete-time MIP models for chemical production scheduling. Computers&Chemical Engineering, 2013,53(11):70-85.
    17 Bowman E H. The schedule-sequencing problem. Operations Research, 1959, 7(5):621-624
    18 Manne A S. On the job-shop scheduling problem. Operations Research, 1960, 8(2):219-223
    19 Hussin S M, Hassan M Y. Coordination of short-term maintenance scheduling with hourly security-constrained unit commitment. In Proceedings of Power Engineering and Optimization Conference(PEOCO), 2014 IEEE
    8 th International. Langkawi, Malaysia. USA:IEEE, 2014.73-78
    20 Jia Z, Ierapetritou M. Efficient short-term scheduling of refinery operations based on a continuous time formulation. Computers&Chemical Engineering, 2004, 28(6):1001-1019.
    21 Joly M, Moro L F L, Pinto J M. Planning and scheduling for petroleum refineries using mathematical programming.Brazilian Journal of Chemical Engineering, 2002, 19(2):207-228.
    22 Ezpeleta J, Colom J M, Martinez J. A Petri net based deadlock prevention policy for flexible manufacturing systems. IEEE Transactions on Robotics and Automation,1995, II(2):173-184.
    23 Lin F J, Fung R F, Wang Y C. Sliding mode and fuzzy control of toggle mechanism using PM synchronous servomotor drive. IEE Proceedings-Control Theory and Applications, 1997, 144(5):393-402.
    24 Balduzzi F, Giua A, Seatzu C. Modelling and simulation of manufacturing systems with first-order hybrid Petri nets.International Journal of Production Research, 2001, 39(2):255-282.
    25 Champagnat R, Esteban P, Pingaud H, Valette, R. Petri net based modeling of hybrid systems. Computers in industry, 1998, 36(1-2):139-146.
    26 Allam M, Alla H. Modeling and simulation of an electronic component manufacturing system using hybrid Petri nets. IEEE Transactions on Semiconductor Manufacturing, 1998, 11(3):374-383.
    27 Chien C F, Chen C H. Using genetic algorithms(GA)and a coloured timed Petri net(CTPN)for modelling the optimization-based schedule generator of a generic production scheduling system. International Journal of Production Research, 2007, 45(8):1763-1789
    28 Sadrieh S A, Ghaeli M, Bahri P A, Lee P L. An integrated Petri net and GA based approach for scheduling of hybrid plants. Computers in Industry, 2007, 58(6):519-530.
    29 Zhang Jin-Song. Modeling and optimization of continuous process production scheduling based on controlled hybrid Petri net[Ph. D. dissertation], Shandong University,China, 2008.(张劲松.基于受控混杂Petri网的连续过程生产调度建模及优化方法[博士学位论文],山东大学,中国, 2008.)
    30 Wu Zhong-Zhen, Feng Yi-Ping, Wang Ji-Shuai, Wu YuCheng, Rong Gang. A simulation based process industry production scheduling closed-loop optimization method.Control and Instruments in Chemical Industry, 2011,38(04):369-374(邬仲臻,冯毅萍,王继帅,吴玉成,荣冈.一种基于仿真的流程工业生产调度闭环优化方法.化工自动化及仪表, 2011, 38(04):369-374)
    31 Wang Wei-Da, Wang Wei, Liu Wen-Jian. Integration of simulation based production planning and scheduling system. Computer Engineering and Design, 2007(07):1626-1629(王伟达,王伟,刘文剑.基于仿真的生产计划与调度系统集成.计算机工程与设计, 2007(07):1626-1629)
    32 Chryssolouris G, Papakostas N, Mourtzis D. Refinery short-term scheduling with tank farm, inventory and distillation management:an integrated simulation-based approach. European Journal of Operational Research, 2005,166(3):812-827.
    33 Ma Wen-Qiang, Du Zi-Ping, Li Dong-Po. Research progress of simulation optimization in manufacturing system production scheduling. Modern Manufacturing Engineering, 2012, 15(03):10-14(马文强,杜子平,李东坡.仿真优化在制造系统生产调度中的研究进展.现代制造工程, 2012, 15(03):10-14)
    34 Baker C T, Dzielinski B P. Simulation of a simplified job shop. Management Science, 1960, 6(3):311-323.
    35 Huang Hui, Chai Tian-You, Zheng Bing-Lin, Luo XiaoChuan, Zhang Hong. The two-level case reasoning iron-water dynamic scheduling system for iron-oriented steel. Journal of Chemical Engineering, 2010, 61(08):2021-2029(黄辉,柴天佑,郑秉霖,罗小川,张红.面向铁钢对应的两级案例推理铁水动态调度系统.化工学报, 2010, 61(08):2021-2029)
    36 Al-Khayyal F, Griffin P M, Smith N R. Solution of a largescale two-stage decision and scheduling problem using decomposition. European Journal of Operational Research,2001, 132(2):453-465
    37 Chen C L, Chen C L. Bottleneck-based heuristics to minimize total tardiness for the flexible flow line with unrelated parallel machines. Computers&Industrial Engineering,2009, 56(4):1393-1401
    38 Zhan De-Chen, Chen Wei, Wang Zhong-Jie. The hybrid genetic algorithm based on heuristic rules and its application in production planning optimization. Computer Engineering and Applications, 2003,(8):215-218(战德臣,陈伟,王忠杰.基于启发式规则的混合遗传算法及其在生产计划优化中的应用.计算机工程与应用, 2003,(8):215-218)
    39 Xiao Zhi-Jiao, Chang Hui-You, Yi Yang. Optimization of workflow dynamic scheduling by heuristic rules and GA combined optimization method. Computer Science, 2007,34(2):157-160(肖志娇,常会友,衣杨.启发式规则与GA结合的优化方法求解工作流动态调度优化问题.计算机科学, 2007, 34(2):157-160)
    40 He Y, Hui C W. A rule-based genetic algorithm for the scheduling of single-stage multi-product batch plants with parallel units. Computers&Chemical Engineering, 2008,32(12):3067-3083
    41 Pistikopoulos E N. Uncertainty in process design and operations. Computers&Chemical Engineering, 1995, 19:553-563
    42 Ho J W, Fang C C. Production capacity planning for multiple products under uncertain demand conditions. International Journal of Production Economics, 2013, 141(2):593-604
    43 Ning Y, Liu J, Yan L. Uncertain aggregate production planning. Soft Computing, 2013, 17(4):617-624
    44 K′orpeo?glu E, Yaman H, Akt¨urk M S. A multi-stage stochastic programming approach in master production scheduling. European Journal of Operational Research,2011, 213(1):166-179
    45 Figueroa-Garc′?a J C, Kalenatic D, Lopez-Bello C A. Multiperiod mixed production planning with uncertain demands:fuzzy and interval fuzzy sets approach. Fuzzy Sets and Systems, 2012, 206:21-38
    46 Torabi S A, Ebadian M, Tanha R. Fuzzy hierarchical production planning(with a case study). Fuzzy Sets and Systems, 2010, 161(11):1511-1529
    47 Guillaume R, Kobyla′nski P, Zieliski P. Production planning with uncertain demands. In:Proceedings of the 2011IEEE International Conference on Fuzzy Systems(FUZZ).Taipei, China:IEEE, 2011, 2644-2649
    48 Iris C, Cevikcan E. A fuzzy linear programming approach for aggregate production planning. In:Proceedings of Supply Chain Management Under Fuzziness. Springer, Berlin,Heidelberg, 2014:355-374
    49 Tang Jia-Fu, Wang Ding-Wei, Xu Bao-Dong. The fuzzy method of multi-variety intensive production planning.Journal of Management, 2003, 6(01):44-50(唐加福,汪定伟,许宝栋.多品种集约生产计划问题的模糊方法.管理科学学报, 2003, 6(01):44-50)
    50 Aghezzaf E H, Sitompul C, Najid N M. Models for robust tactical planning in multi-stage production systems with uncertain demands. Computers&Operations Research,2010, 37(5):880-889
    51 Leung S C H, Tsang S O S, Ng W L, Wu Y. A robust optimization model for multi-site production planning problem in an uncertain environment. European Journal of Operational Research, 2007, 181(1):224-238
    52 Rahmani D, Ramezanian R, Fattahi P, Heydari M. A robust optimization model for multi-product two-stage capacitated production planning under uncertainty. Applied Mathematical Modelling, 2013, 37(20-21):8957-8971
    53 Luo Chun-Peng, Rong Gang. Robust optimization model for gasoline harmonic scheduling under uncertain conditions. Journal of Petroleum(Petroleum Processing), 2009,25(03):391-400(罗春鹏,荣冈.不确定条件下汽油调和调度的鲁棒优化模型(英文).石油学报(石油加工), 2009, 25(03):391-400)
    54 Al-e S M J M, Aryanezhad M B, Sadjadi S J. An efficient algorithm to solve a multi-objective robust aggregate production planning in an uncertain environment. The International Journal of Advanced Manufacturing Technology,2012, 58(5-8):765-782
    55 Lan Y, Zhao R, Tang W. Minimum risk criterion for uncertain production planning problems. Computers&Industrial Engineering, 2011, 61(3):591-599
    56 Li Qi-Qiang, Li Ming, Zhang Ping. Dynamic scheduling system based on event logic. Journal of Tongji University(Natural Science Edition), 2010, 38(12):1836-1840(李歧强,李明,张平.基于事件逻辑的炼油企业动态调度系统.同济大学学报(自然科学版), 2010, 38(12):1836-1840)
    57 Xu Jia-Dong. Research on crude oil scheduling based on Petri net[Ph. D. dissertation], Zhejiang University, China,2014.(徐佳东.基于Petri网的原油调度问题研究[博士学位论文],浙江大学,中国, 2014.)
    58 Ding J L, Yang C E, Xiao Q, Chai T Y, Jin Y C. Dynamic evolutionary multiobjective optimization for raw ore allocation in mineral processing. IEEE Transactions on Emerging Topics in Computational Intelligence, to be published.
    59 Khoshnevis B, Chen Q M. Integration of process planning and scheduling functions. Journal of Intelligent Manufacturing, 1991, 2(3):165-175
    60 Shao X, Li X, Gao L, Zhang C. Integration of process planning and scheduling—a modified genetic algorithm-based approach. Computers&Operations Research, 2009, 36(6):2082-2096
    61 Chunpeng L, Gang R. A strategy for the integration of production planning and scheduling in refineries under uncertainty. Chinese Journal of Chemical Engineering, 2009,17(1):113-127
    62 Yu G, Chai T, Luo X. Two-level production plan decomposition based on a hybrid MOEA for mineral processing.IEEE Transactions on Automation Science and Engineering, 2013, 10(4):1050-1071
    63 Chu Y, You F, Wassick J M, Agarwal A. Integrated planning and scheduling under production uncertainties:bilevel model formulation and hybrid solution method. Computers&Chemical Engineering, 2015, 72:255-272
    64 Yu M, Zhang Y, Chen K, Zhang D. Integration of process planning and scheduling using a hybrid GA/PSO algorithm. The International Journal of Advanced Manufacturing Technology, 2015, 78(1-4):583-592
    65 Baldea M, Harjunkoski I. Integrated production scheduling and process control:a systematic review. Computers&Chemical Engineering, 2014, 71:377-390
    66 Dias L S, Ierapetritou M G. Integration of scheduling and control under uncertainties:review and challenges. Chemical Engineering Research and Design, 2016, 116:98-113
    67 Gao Xiao-Yong, Jiang Yong-Heng, Huang De-Xian. Process modelling based on integration of unitwide optimal process control and plantwide scheduling. CIESC Journal,2016, 67(12):5105-5111(高小永,江永亨,黄德先.基于装置级优化控制与厂级调度优化集成的过程模型方法.化工学报, 2016, 67(12):5105-5111)
    68 Flores-Tlacuahuac A, Grossmann I E. Simultaneous cyclic scheduling and control of a multiproduct CSTR. Industrial&Engineering Chemistry Research, 2006, 45(20):6698-6712
    69 Zhuge J, Ierapetritou M G. Integration of scheduling and control with closed loop implementation. Industrial&Engineering Chemistry Research, 2012, 51(25):8550-8565
    70 Skogestad S. Control structure design for complete chemical plants. Computers&Chemical Engineering, 2004,28(1-2):219-234
    71 Ellis M, Christofides P D. Integrating dynamic economic optimization and model predictive control for optimal operation of nonlinear process systems. Control Engineering Practice, 2014, 22(22):242-251
    72 Baldea M, Du J, Park J, Harjunkoski I. Integrated production scheduling and model predictive control of continuous processes. AIChE Journal, 2015, 61(12):4179-4190
    73 Ellis M, Durand H, Christofides P D. A tutorial review of economic model predictive control methods. Journal of Process Control, 2014, 24(8):1156-1178
    74 Jschke J, Skogestad S. NCO tracking and self-optimizing control in the context of real-time optimization. Journal of Process Control, 2011, 21(10):1407-1416
    75 Skogestad S. Self-optimizing control:the missing link between steady-state optimization and control, Computers and Chemical Engineering, 2000, 24(2):569-57576 Skogestad S. Plantwide control:the search for the selfoptimizing control structure. Journal of Process Control,2000, 10(5):487-507
    77 De Souza G, Odloak D, Zanin A C. Real time optimization(RTO)with model predictive control(MPC). Computers&Chemical Engineering, 2010, 34(12):1999-2006
    78 Marchetti A G, Ferramosca A, Gonz′alez A H. Steady-state target optimization designs for integrating real-time optimization and model predictive control. Journal of Process Control, 2014, 24(1):129-145
    79 Biegler L T, Yang X, Fischer G A G. Advances in sensitivity-based nonlinear model predictive control and dynamic real-time optimization. Journal of Process Control, 2015, 30:104-116
    80 Tosukhowong T, Lee J H. Real-time economic optimization for an integrated plant via a dynamic optimization scheme In:Proceedings of American Control Conference.Boston, Massachusetts:IEEE, 2004:233-238
    81 Vega P, Revollar S, Francisco M, Francisco S M. Integration of set point optimization techniques into nonlinear MPC for improving the operation of WWTPs. Computers&Chemical Engineering, 2014, 68:78-95
    82 Zhu G Y, Henson M A, Ogunnaike B A. A hybrid model predictive control strategy for nonlinear plant-wide control. Journal of process control, 2000, 10(5):449-458
    83 Zheng Y, Li S, Wang X. Distributed model predictive control for plant-wide hot-rolled strip laminar cooling process.Journal of Process Control, 2009, 19(9):1427-1437
    84 Fan J, Jiang Y, Chai T. MPC-based setpoint compensation with unreliable wireless communications and constrained operational conditions. Neurocomputing, 2017,270:110-121
    85 Xie S, Xie Y, Ying H, Gui W, Yang C. A hybrid control strategy for real-time control of the iron removal process of the zinc hydrometallurgy plants. IEEE Transactions on Industrial Informatics, 2018.
    86 Precup R E, Hellendoorn H. A survey on industrial applications of fuzzy control. Computers in Industry, 2011,62(3):213-226
    87 Chai T, Ding J, Wu F. Hybrid intelligent control for optimal operation of shaft furnace roasting process. Control Engineering Practice, 2011, 19(3):264-275
    88 Chai T Y, Qin S J, Wang H. Optimal operational control for complex industrial processes. Annual Reviews in Control, 2014, 38(1):81-92
    89 Ding J, Chen Q, Chai T, Wang H, Su C Y. Data mining based feedback regulation in operation of hematite ore mineral processing plant. In:Proceedings of American Control Conference, 2009. ACC 09. IEEE, 2009:907-912
    90 Zhou P, Chai T Y. Intelligent operational feedback control for typical hematite grinding processes. Control Theory&Applications, 2014, 31(10):1352-1359(周平,柴天佑.典型赤铁矿磨矿过程智能运行反馈控制.控制理论与应用, 2014, 31(10):1352-1359)
    91 Wu Z, Wu Y, Chai T Y, Sun J. Data-driven abnormal condition identification and self-healing control system for fused magnesium furnace. IEEE Transactions on Industrial Electronics, 2014, 62(3):1703-1715
    92 Jiang Y, Fan J, Chai T, Li J, Lewis F L. Data-driven flotation industrial process operational optimal control based on reinforcement learning. IEEE Transactions on Industrial Informatics, 2018, 14(5):1974-1989
    93 Li Jin-Na, Gao Xi-Ze, Chai Tian-You, Fan Jia-Lu. Data driven industrial process operation optimization control.Control Theory&Applications, 2016, 33(12):1584-1592(李金娜,高溪泽,柴天佑,范家璐.数据驱动的工业过程运行优化控制.控制理论与应用, 2016, 33(12):1584-1592)
    94 Yu G, Chai T, Luo X. Multiobjective production planning optimization using hybrid evolutionary algorithms for mineral processing. IEEE Transactions on Evolutionary Computation, 2011, 15(4):487-514
    95 Ding J, Chai T, Wang H, Wang J, Zheng X. An intelligent factory-wide optimal operation system for continuous production process. Enterprise Information Systems, 2016,10(3):286-302
    96 Ding J, Modares H, Chai T, Lewis F L. Data-based multiobjective plant-wide performance optimization of industrial processes under dynamic environments. IEEE Transactions on Industrial Informatics, 2016, 12(2):454-465
    97 Chai T, Ding J, Wang H. Multi-objective hybrid intelligent optimization of operational indices for industrial processes and application. IFAC Proceedings Vol. 2011, 2011, 44(1):10517-10522
    98 Ding J, Yang C, Chai T. Recent progress on data-based optimization for mineral processing plants. Engineering,2017, 3(2):183-187
    99 Chai T, Ding J,Wang H. Multi-objective hybrid intelligent optimization of operational indices for industrial processes and application. In:Proceedings of IFAC World Congress,Milan, Italy:2011, 10517-10522
    100 Yang C, Ding J. Constrained dynamic multi-objective evolutionary optimization for operational indices of beneficiation process. Journal of Intelligent Manufacturing, 2017,DOI:10.1007/s10845-017-1319-1
    101 Ding J, Chai T, Wang H. Offline modeling for product quality prediction of mineral processing using modeling error PDF shaping and entropy minimization. IEEE Transactions on Neural Networks, 2011, 22(3):408-419
    102 Ding J, Chai T, Cheng W, Zheng X. Data-based multiplemodel prediction of the production rate for hematite ore beneficiation process. Control Engineering Practice, 2015,45:219-229
    103 Liu C, Ding J, Toprac A J, Chai T. Data-based adaptive online prediction model for plant-wide production indices. Knowledge and Information Systems, 2014, 41(2):401-421
    104 Liu C, Ding J, Chai T. Robust prediction for quality of industrial processes. In:Proceedings of the 2014 IEEE International Conference on Information and Automation(ICIA). Hailar, China:IEEE, 2014. 1172-1175
    105 Ding J, Zhao L, Liu C, Chai T. GA-based principal component selection for production performance estimation in mineral processing. Computers&Electrical Engineering,2014, 40(5):1447-1459
    106 Ding J, Chai T, Wang H, Chen X. Knowledge-based global operation of mineral processing under uncertainty.IEEE Transactions on Industrial Informatics, 2012, 8(4):849-859

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700