用户名: 密码: 验证码:
小鼠黑色素瘤功能异常CD8~+T细胞基因调控网络构建与分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Construction and Analysis of Gene Regulatory Network in Dysfunctional CD8~+T Cells
  • 作者:韩鹏勇 ; 塔娜 ; 宝鲁日 ; 于海泉
  • 英文作者:HAN Pengyong;TA Na;BAO Luri;YU Haiquan;State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock,Inner Mongolia University;Changzhi Medical College;
  • 关键词:抗病育种 ; 基因调控网络 ; 小鼠黑色素瘤 ; 功能异常CD8+T细胞 ; 特有基因
  • 英文关键词:disease resistance breeding;;gene regulatory network;;mouse melanoma model;;dysfunctional CD8+T cell;;specific gene
  • 中文刊名:NKDB
  • 英文刊名:Journal of Agricultural Science and Technology
  • 机构:内蒙古大学省部共建草原家畜生殖调控与繁育国家重点实验室;长治医学院;
  • 出版日期:2019-01-10 16:36
  • 出版单位:中国农业科技导报
  • 年:2019
  • 期:v.21;No.139
  • 基金:国家自然科学基金项目(31460311);; 内蒙古自然科学基金项目(2016ZD01)资助
  • 语种:中文;
  • 页:NKDB201903006
  • 页数:6
  • CN:03
  • ISSN:11-3900/S
  • 分类号:48-53
摘要
疾病是全球范围内危害畜禽健康的主要问题,解析免疫系统调控相关基因成为当前抗病分子育种的研究热点。为研究小鼠黑色素瘤模型功能异常CD8~+T细胞对免疫抗体处理的应答机制,通过基因调控网络方法筛选功能异常CD8~+T细胞在Ig G和PD1抗体处理的特定基因、转录因子和细胞表面受体。结果发现对照组、PD1抗体与Ig G抗体处理组分别有28、17、33个特定表达基因。与对照组相比,Ig G和PD1处理组有2个转录因子Zfx、Zfhx3关闭表达,PD1处理组细胞表面受体Raet1b表达。Raet1b基因的表达可能使小鼠黑色素瘤功能异常CD8~+T细胞恢复功能,结果为抗病育种的相关基因研究提供理论基础。
        Disease is a major threat to livestock and poultry health worldwide. Identifying key genes related to disease resistance has become a research hotpot in molecular breeding of disease resistance. To better understand the response mechanism of dysfunctional CD8~+T cell to immune therapy treatment,the gene regulatory network was constructed for the dysfunctional CD8~+T cells under PD1,Ig G antibody treatments. There were 28,17,33 genes being identified in control,Ig G and PD1 antibody treatment groups,respectively. Two transcription factors of Zfx and Zfhx3 expressed silencing under treatments of both Ig G and PD1. The surface receptor of Raet1 b expressed increasingly under treatment of PD1,which might recover dysfunctional CD8~+T cells. This research provided theoretical basis for gene exploring related to disease resistance breeding.
引文
[1] Thomazella D,Brail Q,Dahlbeck D,et al.. CRISPR-Cas9mediated mutagenesis of a DMR6 ortholog in tomato confersbroad-spectrum disease resistance[J]. BioRxiv.,2016,064824.
    [2] Zhang Y,Kurupati R,Liu L,et al.. Enhancing CD8(+)Tcell fatty acid catabolism within a metabolically challengingtumor microenvironment increases the efficacy of melanomaimmunotherapy[J]. Cancer Cell,2017,32(3):377-391.
    [3] Mognol G P, Spreafico R, Wong V, et al.. Exhaustionassociated regulatory regions in CD8+tumor-infiltrating T cells[J]. Proc. Natl. Acad. Sci. USA,2017,114(13):E2776-E2785.
    [4] Anderson T M, Ibayashi Y, Tokuda Y, et al.. Effects ofsystemic recombinant interleukin-2 on natural killer andlymphokine activated killer activity of human tumor infiltratinglymphocytes[J]. Cancer Res.,1988,48(5):1180-1183.
    [5] Nadeem M A, Nawaz M A, Shahid M Q, et al.. DNAmolecular markers in plant breeding:current status and recentadvancements in genomic selection and genome editing[J].Biotechnol. Biotech. Eq.,2017,1-25.
    [6] Davidson E H,Erwin D H,Gene regulatory networks and theevolution of animal body plans[J]. Science, 2006, 311(5762):796-800.
    [7] Qu K,Zaba L C,Giresi P G,et al.. Individuality and variationof personal regulomes in primary human T cells[J]. Cell Sys.,2015,1(1):51-61.
    [8] Parffit D E,Shen M M. From blastocyst to gastrula:generegulatory networks of embryonic stem cells and early mouseembryogenesis[J]. Philos. Trans. R. Soc. B, 2014,369:1657.
    [9] Bussey K J,Cisneros L H,Lineweaver C H,et al.. Ancestralgene regulatory networks drive cancer[J]. Proc. Natl. Acad.Sci. USA,2017,114(24):6160-6162.
    [10] Ramirez R N,El-Ali N C,Mager M A,et al.. Dynamic generegulatory networks of human myeloid differentiation[J]. CellSys.,2017,4(4):416-429.
    [11] Neph S,StergachisA B,Reynolds A,et al.. Circuitry anddynamics of human transcription factor regulatory networks[J].Cell,2012,150(6):1274-1286.
    [12] Buenrostro J D,Giresi P G,Zaba L C,et al.. Transposition ofnative chromatin for fast and sensitive epigenomic profiling ofopen chromatin, DNA-binding proteins and nucleosomeposition[J]. Nat. Methods,2013,10(12):1213.
    [13] Li Y,Shao T,Jiang C,et al.. Construction and analysis ofdynamic transcription factor regulatory networks in theprogression of glioma[J]. Sci. Rep. UK,2015,5(4):231-235.
    [14] Han P,Gopalakrishnan C,Yu H,et al.. Gene regulatorynetwork rewiring in the immune cells associated with cancer[J]. Genes,2017,8(11):308.
    [15] Heinz S,Benner C,Spann N,et al.. Simple combinations oflineage-determining transcription factors prime cis-regulatoryelements required for macrophage and B cell identities[J].Mol. Cell.,2010,38(4):576-589.
    [16] Bailey T L,Boden M,Buske F A et al.. MEME SUITE:Toolsfor motif discovery and searching[J]. Nucleic Acids Res.,2009,37(suppl2):W202-W208.
    [17] Grant C E,Bailey T L,Noble W S,FIMO:Scanning foroccurrences of a given motif[J]. Bioinformatics,2011,27(7):1017-1018.
    [18] Shannon P,Markiel A,Ozier O,et al.. Cytoscape:A softwareenvironment for integrated models of biomolecular interactionnetworks[J]. Genome Res.,2003,13(11):2498-2504.
    [19] Boussouar F,Rousseaux S,Khochbin S. A new insight intomale genome reprogramming by histone variants and histonecode[J].Cell Cycl.,2008,7:3499-3502.
    [20] Gao W,Shen H,Liu L,et al.. MiR-21 overexpression inhuman primary squamous cell lung carcinoma is associated withpoor patient prognosis[J]. J. Cancer Res. Clin.,2011,137:557-566.
    [21] Lin S L,Chang D C,Ying SY,et al.. MicroRNA miR-302inhibits the tumorigenecity of human pluripotent stem cells bycoordinate suppression of the CDK2 and CDK4/6 cell cyclepathways[J]. Cancer Res.,2010,70:9473-9482.
    [22] Babapoor S,Fleming E,Wu R,et al.. A novel miR-451aisomiR,associated with amelanotypic phenotype,acts as atumor suppressor in melanoma by retarding cell migration andinvasion[J]. PLoS ONE,2014. 9(9):e107502.
    [23] Garcia P B,Cai A,Bates J G,et al.. MiR290-5p/292-5pactivate the immunoglobulin kappa locus in B cell development[J]. PLoS ONE,2012,7(8):e43805.
    [24] Smith N L, Wissink E M, Grimson A, et al.. MiR-150regulates differentiation and cytolytic effector function in CD8+T cells[J]. Sci. Rep.,2015,5:16399.
    [25] Chiu C C,Wu W S. Investigation of microRNAs in mousemacrophage responses to lipopolysaccharide-stimulation bycombining gene expression with microRNA-target information[J]. BMC Genomics,2015,16:S13.
    [26] Schober T, Magg T, Laschinger M, et al.. A humanimmunodeficiency syndrome caused by mutations in CARMIL2[J]. Nat. Commun.,2017,8:14209.
    [27] Gan L H,Chen S J,Zhong J,et al.. ZIC1 is downregulatedthrough promoter hypermethylation,and functions as a tumorsuppressor gene in colorectal cancer[J]. PLoS ONE,2011,6(2):e16916.
    [28] Ma G,Dai W,Sang A,et al.. Roles of ZIC family genes inhuman gastric cancer[J]. Int. J. Mol. Med.,2016,38(1):259-266.
    [29] Marchini S,Poynor E,Barakat R R,et al.. The zinc fingergene ZIC2 has features of an oncogene and its overexpressioncorrelates strongly with the clinical course of epithelial ovariancancer[J]. Clin. Cancer Res.,2012,18(16):4313-4324.
    [30] Lim L S,Loh Y H,Zhang W,et al.. Zic3 is required formaintenance of pluripotency in embryonic stem cells[J]. Mol.Biol. Cell.,2007,18(4):1348-1358.
    [31] Gianfran C,Picascia L,Pisapia,et al.. Expression level ofrisk genes of MHC class II is a susceptibility factor forautoimmunity:New insights[J]. J. Autoimmun.,2018,5(89):1-10.
    [32] Diefenbach A,Jamieson A M,Liu S D,et al.. Ligands for themurine NKG2D receptor:expression by tumor cells andactivation of NK cells and macrophages[J]. Nat. Immunol.,2000,1(2):119-126.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700