用户名: 密码: 验证码:
Cumulative material damage from train of ultrafast infrared laser pulses
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Cumulative material damage from train of ultrafast infrared laser pulses
  • 作者:A.Hanuka ; K.P.Wootton ; Z.Wu ; K.Soong ; I.V.Makasyuk ; R.J.EnglAND ; L.Sch?chter
  • 英文作者:A.Hanuka;K.P.Wootton;Z.Wu;K.Soong;I.V.Makasyuk;R.J.EnglAND;L.Sch?chter;Technion – Israel Institute of Technology;SLAC National Accelerator Laboratory;Stanford University;
  • 英文关键词:laser-induced breakdown;;laser damage;;lasers and laser optics
  • 中文刊名:HPLS
  • 英文刊名:高功率激光科学与工程(英文版)
  • 机构:Technion – Israel Institute of Technology;SLAC National Accelerator Laboratory;Stanford University;
  • 出版日期:2019-03-30
  • 出版单位:High Power Laser Science and Engineering
  • 年:2019
  • 期:v.7
  • 基金:supported by the U.S.Department of Energy under Contracts DE-AC02-76SF00515(SLAC);; Israel Science Foundation
  • 语种:英文;
  • 页:HPLS201901007
  • 页数:6
  • CN:01
  • ISSN:31-2078/O4
  • 分类号:58-63
摘要
We developed a systematic experimental method to demonstrate that damage threshold fluence(DTF) for fused silica changes with the number of femtosecond laser(800 nm, 65 ± 5 fs, 10 Hz and 600 Hz) pulses. Based on the experimental data, we were able to develop a model which indicates that the change in DTF varies with the number of shots logarithmically up to a critical value. Above this value, DTF approaches an asymptotic value. Both DTF for a single shot and the asymptotic value as well as the critical value where this happens, are extrinsic parameters dependent on the configuration(repetition rate, pressure and geometry near or at the surface). These measurements indicate that the power of this dependence is an intrinsic parameter independent of the configuration.
        We developed a systematic experimental method to demonstrate that damage threshold fluence(DTF) for fused silica changes with the number of femtosecond laser(800 nm, 65 ± 5 fs, 10 Hz and 600 Hz) pulses. Based on the experimental data, we were able to develop a model which indicates that the change in DTF varies with the number of shots logarithmically up to a critical value. Above this value, DTF approaches an asymptotic value. Both DTF for a single shot and the asymptotic value as well as the critical value where this happens, are extrinsic parameters dependent on the configuration(repetition rate, pressure and geometry near or at the surface). These measurements indicate that the power of this dependence is an intrinsic parameter independent of the configuration.
引文
1.Y.C.Huang and R.L.Byer,Appl.Phys.Lett.69,2175(1996).
    2.R.J.England,R.J.Noble,B.Fahimian,B.Loo,E.Abel,A.Hanuka,and L.Schachter,AIP Conf.Proc.1777,060002(2016).
    3.X.Liu,D.Du,and G.Mourou,IEEE J.Quantum Electron.33,1706(1997).
    4.B.Stuart,M.Feit,S.Herman,A.Rubenchik,B.Shore,and M.Perry,Phys.Rev.B 53,1749(1996)1.
    5.C.W.Carr,H.B.Radousky,and S.G.Demos,Phys.Rev.Lett.91,127402(2003).
    6.M.Mero,J.Liu,W.Rudolph,D.Ristau,and K.Starke,Phys.Rev.B 71,115109(2005).
    7.B.Chimier,O.Ut′eza,N.Sanner,M.Sentis,T.Itina,P.Lassonde,F.L′egar′e,F.Vidal,and J.C.Kieffer,Phys.Rev.B 84,094104(2011).
    8.J.Bude,P.Miller,S.Baxamusa,N.Shen,T.Laurence,W.Steele,T.Suratwala,L.Wong,W.Carr,D.Cross,and M.Monticelli,Opt.Express 22,5839(2014).
    9.T.a Laurence,J.D.Bude,S.Ly,N.Shen,and M.D.Feit,Opt.Express 20,11561(2012).
    10.Y.Jee,F.M.Becker,and M.R.Walser,J.Opt.Soc.Am.B 5,648(1988).
    11.F.Di Niso,C.Gaudiuso,T.Sibillano,F.P.Mezzapesa,A.Ancona,and P.M.Lugar`a,Opt.Express 22,12200(2014).
    12.F.Liang,R.Vall′ee,D.Gingras,and S.L.Chin,Opt.Mater.Express 1,1244(2011).
    13.G.Raciukaitis,M.Brikas,P.Gecys,and M.Gedvilas,Proc.SPIE 7005,70052L(2008).
    14.P.T.Mannion,J.Magee,E.Coyne,G.M.OConnor,and T.J.Glynn,Appl.Surf.Sci.233,275(2004).
    15.A.Mouskeftaras,S.Guizard,N.Fedorov,and S.Klimentov,Appl.Phys.A 110,709(2013).
    16.M.Lenzner,J.Kr¨uger,S.Sartania,Z.Cheng,Ch.Spielmann,G.Mourou,W.Kautek,and F.Krausz,Phys.Rev.Lett.80,4076(1998).
    17.D.Ashkenasi,M.Lorenz,R.Stoian,and A.Rosenfeld,Appl.Surf.Sci.150,101(1999).
    18.A.Rosenfeld,M.Lorenz,R.Stoian,and D.Ashkenasi,Appl.Phys.A 69,373(1999).
    19.F.Liang,Q.Sun,D.Gingras,R.Vall′ee,and S.L.Chin,Appl.Phys.Lett.96,101903(2010).
    20.J.Bonse,J.M.Wrobel,J.Kr¨uger,and W.Kautek,Appl.Phys.A 72,89(2001).
    21.A.C.Tien,S.Backus,H.Kapteyn,M.Murnane,and G.Mourou,Phys.Rev.Lett.82,3883(1999).
    22.D.Du,X.Liu,G.Korn,J.Squier,and G.Mourou,Appl.Phys.Lett.64,3071(1994).
    23.K.Zhang,L.Jiang,X.Li,X.Shi,D.Yu,L.Qu,and Y.Lu,J.Phys.D 47,435105(2014).
    24.J.Roth,E.Tsitrone,A.Loarte,T.Loarer,G.Counsell,R.Neu,V.Philipps,S.Brezinsek,M.Lehnen,P.Coad,C.Grisolia,K.Schmid,K.Krieger,A.Kallenbach,B.Lipschultz,R.Doerner,R.Causey,V.Alimov,W.Shu,O.Ogorodnikova,A.Kirschner,G.Federici,and A.Kukushkin,J.Nucl.Mater.390-391,1(2009).
    25.E.A.Peralta and Rl Byer,in Proceedings of the 2011 Particle Accelerator Conference(2011),p.280.
    26.R.D.Allen,G.B.David,and G.Nomarski,Z.Wiss.Mikrosk.Mikrosk.Tech.69,193(1969).
    27.W.C.Nixon,Microelectron.Reliab.4,55(1965).
    28.C.Li,Y.Zhao,Y.Cui,Y.Wang,X.Peng,C.Shan,M.Zhu,J.Wang,and J.Shao,Opt.Laser Technol.106,372(2018).
    29.K.Soong,R.L.Byer,E.R.Colby,R.J.England,and E.A.Peralta,AIP Conf.Proc.1507,511(2012).
    30.D.Nguyen,L.Emmert,P.Schwoebel,D.Patel,C.Menoni,M.Shinn,and W.Rudolph,Opt.Express 19,5690(2011).
    31.Q.Sun,H.B.Jiang,Y.Liu,Y.H.Zhou,H.Yang,and Q.H.Gong,Chin.Phys.Lett.23,189(2006).
    32.D.von der Linde and H.Schuler,J.Opt.Soc.Am.B 13,216(1996).
    33.K.Soong,R.Byer,C.McGuinness,E.A.Peralta,and E.Colby,in Proceedings of the 2011 Particle Accelerator Conference(2011),p.277.
    34.L.V.Keldysh,J.Exptl.Theoret.Phys.47,1945(1964).
    35.S.I.Anisimov,N.M.Bityurin,and B.S.Luk’yanchuk,in Photo-Excited Processes,Diagnostics and Applications:Fundamentals and Advanced Topics,A.Peled(ed.)(Springer,2003),p.121.
    36.L.A.Emmert,M.Mero,and W.Rudolph,J.Appl.Phys.108,043523(2010).
    37.W.Rudolph,L.Emmert,Z.Sun,D.Patel,and C.Menoni,Proc.SPIE 8885,888516(2013).
    38.R.A.Negres,M.D.Feit,and S.G.Demos,Opt.Express 18,74(2010).
    39.Z.Sun,M.Lenzner,and W.Rudolph,J.Appl.Phys.117,073102(2015).
    40.A.Hanuka,L.Sch¨achter,K.P.Wootton,Z.Wu,K.Soong,I.V.Makasyuk,and R.J.England,in Proceedings of IPAC2016(2016),p.4066.
    41.L.A.Emmert,M.Mero,D.N.Nguyen,W.Rudolph,D.Patel,E.Krous,and C.S.Menoni,Proc.SPIE 7842,784211(2010).
    42.Y.Takigawa,K.Kurosawa,W.Sasaki,K.Yoshida,E.Fujiwara,and Y.Kato,J.Non-Cryst.Solids 116,293(1990)2.
    43.A.Hanuka and L.Sch¨achter,Phys.Rev.Accel.21,54001(2018).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700