深冷液化空气储能系统的优化与方案设计
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Optimization and Design of the Liquefied Air Energy Storage System
  • 作者:何青 ; 王立健 ; 郝银萍 ; 刘文毅
  • 英文作者:HE Qing;WANG Lijian;HAO Yinping;LIU Wenyi;School of Energy Power and Mechanical Engineering, North China Electric Power University;
  • 关键词:深冷液化空气储能系统 ; 数学模型 ; 系统优化 ; 方案设计 ; 绝热效率
  • 英文关键词:liquefied air energy storage system;;mathematical model;;system optimization;;scheme design;;adiabatic efficiency
  • 中文刊名:ZGDC
  • 英文刊名:Proceedings of the CSEE
  • 机构:华北电力大学能源动力与机械工程学院;
  • 出版日期:2019-04-19 10:26
  • 出版单位:中国电机工程学报
  • 年:2019
  • 期:v.39;No.626
  • 基金:国家重点研发计划项目(2017YFB0903601)~~
  • 语种:中文;
  • 页:ZGDC201915014
  • 页数:10
  • CN:15
  • ISSN:11-2107/TM
  • 分类号:149-158
摘要
根据深冷液化空气储能系统各个环节的数学模型,对系统各个环节进行热力学分析和参数的优化研究,选择4级压缩机组和4级膨胀机组分别作为系统的储能环节和释能环节,并由液化环节确定了系统的最佳储能压力和释能压力分别为1.5×10~4k Pa和7.1×10~3k Pa。根据优化分析结果建立了10MW深冷液化空气储能系统设计方案,并对该设计系统进行热力学研究,分析结果表明,系统压缩机组和膨胀机组的绝热效率每增加5%,循环效率平均增加5.5%,空气流量平均减少0.99kg/s,由此可以得出,在保持深冷液化空气储能系统额定功率不变的条件下的,随着机组绝热效率的增加,系统的循环效率逐渐提高,膨胀做功的空气流量逐渐减少,更加有利于系统利用更少的空气存储更多的电能。
        According to its mathematical model of each link of the liquefied air energy storage system, thermodynamic analysis and optimization of parameters were carried out in this paper. The four-stage compressor unit and the four-stage expansion unit were selected as the energy storage and energy release links of the system, respectively. And according to the liquefaction link, the energy storage pressure and energy release pressure of the system were determined to be 1.5?104 kPa and 7.1?103 kPa, respectively. The design scheme of a10 MW liquefied air energy storage system was established based on the optimization results. Finally, the thermodynamics of the design system was studied and the results show that for every 5% increase in the adiabatic efficiency of the system compressor and expansion units, the cycle efficiency increases by an average of 5.5% and the air flow decreases by an average of 0.99 kg/s. It can be concluded that under the condition that the rated power of the liquefied air energy storage system is maintained, with the increase of the adiabatic efficiency of the units, the cycle efficiency of the system is gradually increased,and the air flow for expansion work is gradually reduced,which is more conducive to the system using less air to store more power.
引文
[1]丁怡婷2017年可再生能源发电量1.7万亿千瓦时[EB/OL].(2018-01-26).http://www.gov.cn/xinwen/2018-01/26/content_5260752.htm.Ding Yiting.Renewable energy generation in 2017 is 1.7trillion kWh[EB/OL].(2018-01-26).http://www.gov.cn/xinwen/2018-01/26/content_5260752.htm.
    [2]Chen Lei,Dai Yuanhang,Min Yong,et al.Study on the mechanism of transient voltage stability of wind power with power electronic interface[C]//Proceedings of 2015IEEE PES Asia-Pacific Power and Energy Engineering Conference.Brisbane,QLD,Australia:IEEE,2015:1-5.
    [3]陈达,鲜文军,吴涛,等.混合电力市场下碳排放流的分配[J].电网技术,2016,40(6):1683-1688.Chen Da,Xian Wenjun,Wu Tao,et al.Allocation of carbon emission flow in hybrid electricity market[J].Power System Technology,2016,40(6):1683-1688(in Chinese).
    [4]Wang Jidai,Lu Kunpeng,Ma Lan,et al.Overview of compressed air energy storage and technology development[J].Energies,2017,10(7):991.
    [5]Alotto P,Guarnieri M,Moro F.Redox flow batteries for the storage of renewable energy:a review[J].Renewable and Sustainable Energy Reviews,2014,29:325-335.
    [6]张新敬.压缩空气储能系统若干问题的研究[D].北京:中国科学院研究生院,2011.Zhang Xinjing.Investigation on compressed air energy storage system[D].Beijing:University of the Chinese Academy of Sciences,2011(in Chinese).
    [7]陈海生,刘金超,郭欢,等.压缩空气储能技术原理[J].储能科学与技术,2013,2(2):146-151.Chen Haisheng,Liu Jinchao,Guo Huan,et al.Technical principle of compressed air energy storage system[J].Energy Storage Science and Technology,2013,2(2):146-151(in Chinese).
    [8]Luo Xing,Wang Jihong,Dooner M,et al.Overview of current development in electrical energy storage technologies and the application potential in power system operation[J].Applied Energy,2015,137:511-536.
    [9]Williams R A,Radclifee J,Strahan D,et al.Liquid air in the energy and transport systems[M].New York:Centre for Low Carbon Futures,2013.
    [10]王维萌,黄葆华,徐桂芝,等.一种基于深冷液化空气储能技术的新型发电系统概述[J].华北电力技术,2017(3):46-52.Wang Weimeng,Huang Baohua,Xu Guizhi,et al.Introduction of a novel power generation system based on liquid air energy storage technology[J].North China Electric Power,2017(3):46-52(in Chinese).
    [11]Sciacovelli A,Vecchi A,Ding Y.Liquid air energy storage(LAES)with packed bed cold thermal storageFrom component to system level performance through dynamic modelling[J].Applied Energy,2017,190:84-98.
    [12]梅生伟,李瑞,陈来军,等.先进绝热压缩空气储能技术研究进展及展望[J].中国电机工程学报,2018,38(10):2893-2907.Mei Shengwei,Li Rui,Chen Laijun,et al.An overview and outlook on advanced adiabatic compressed air energy storage technique[J].Proceedings of the CSEE,2018,38(10):2893-2907(in Chinese).
    [13]何青,刘辉,张军良,等.基于正交设计的压缩空气储能系统?效率分析[J].动力工程学报,2016,36(4):313-319.He Qing,Zhang Junliang,Liu Hui,et al.Analysis on exergy efficiency of a compressed-air energy storage system based on orthogonal design[J].Journal of Chinese Society of Power Engineering,2016,36(4):313-319(in Chinese).
    [14]姚尔人,席光,王焕然,等.一种新型压缩空气与抽水复合储能系统的热力学分析[J].西安交通大学学报,2018,52(3):12-18.Yao Erren,Xi Guang,Wang Huanran,et al.Thermodynamic analysis on a novel compressed-air based pumped hydro energy storage system[J].Journal of Xi'an Jiaotong University,2018,52(3):12-18(in Chinese).
    [15]任彦,黄葆华,徐桂芝,等.基于一种深冷液化空气储能发电系统的多系统耦合启动研究[J].华北电力技术,2017(4):38-43.Ren Yan,Huang Baohua,Xu Guizhi,et al.Study on multi system coupling start based on one kind of cryogenic liquefied air energy storage and power generation system[J].North China Electric Power,2017(4):38-43(in Chinese).
    [16]Kantharaj B,Garvey S,Pimm A.Compressed air energy storage with liquid air capacity extension[J].Applied Energy,2015,157:152-164.
    [17]Xue X D,Wang S X,Zhang X L,et al.Thermodynamic analysis of a novel liquid air energy storage system[J].Physics Procedia,2015,67:733-738.
    [18]Guo Huan,Xu Yujie,Chen Haisheng,et al.Thermodynamic analytical solution and exergy analysis for supercritical compressed air energy storage system[J].Applied Energy,2017,199:96-106.
    [19]杨科,张远,李雪梅,等.先进绝热压缩空气储能系统的设计计算[J].工程热物理学报,2012,33(5):725-728.Yang Ke,Zhang Yuan,Li Xuemei,et al.Design and calculation of advanced adiabatic compressed air energy storage system[J].Journal of Engineering Thermophysics,2012,33(5):725-728(in Chinese).
    [20]陈仕卿,许剑,张新敬,等.储能过程设计参数对压缩空气储能系统性能影响研究[J].热能动力工程,2017,32(3):40-46.Chen Shiqing,Xu Jian,Zhang Xinjing,et al.Effect of design parameters on the performance of regenerative compressed air energy storage system[J].Journal of Engineering for Thermal Energy and Power,2017,32(3):40-46(in Chinese).
    [21]Chen Shiqing,Xu Jian,Zhang Xinjing,et al.Influence of design parameters of energy storage process on performance of compressed air energy storage system[J].Journal of Engineering for Thermal Energy and Power,2017,32(3):40-46.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700