用户名: 密码: 验证码:
耐盐和非耐盐大麦幼苗叶片抗氧化及抗坏血酸谷胱甘肽循环系统对NaCl胁迫的反应差异
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Response difference of antioxidant and ascorbate-glutathione cycle system to NaCl stress between salt tolerant and sensitive barley cultivars at the seedling stage
  • 作者:李琲琲 ; 刘志萍 ; 张凤英 ; 包海柱 ; 孟繁昊 ; 王聪 ; 杨恒山 ; 徐寿军
  • 英文作者:LI Bei-bei;LIU Zhi-ping;ZHANG Feng-ying;BAO Hai-zhu;MENG Fan-hao;WANG Cong;YANG Heng-shan;XU Shou-jun;College of Agronomy, Inner Mongolia University for Nationalities;Institute of Agronomy, Inner Mongolia Academy of Agricultural Sciences;
  • 关键词:大麦 ; NaCl胁迫 ; 抗氧化系统 ; 抗坏血酸谷胱甘肽循环
  • 英文关键词:barley;;NaCl stress;;antioxidant enzymes;;ascorbate-glutathione cycle
  • 中文刊名:ZWYF
  • 英文刊名:Journal of Plant Nutrition and Fertilizer
  • 机构:内蒙古民族大学农学院;内蒙古农牧业科学研究院作物所;
  • 出版日期:2017-05-25
  • 出版单位:植物营养与肥料学报
  • 年:2017
  • 期:v.23;No.114
  • 基金:国家自然科学基金项目(31360307);; 内蒙古自治区人才开发基金项目;; 内蒙古自治区“草原英才”工程项目;; 内蒙古民族大学研究生科技创新项目(NMDSS1430)资助
  • 语种:中文;
  • 页:ZWYF201703018
  • 页数:9
  • CN:03
  • ISSN:11-3996/S
  • 分类号:160-168
摘要
【目的】研究NaCl胁迫下,耐盐和非耐盐品系大麦幼苗叶片抗氧化系统及抗坏血酸谷胱甘肽循环的反应差异。【方法】以耐盐品系12pj-118和非耐盐品系12pj-045为材料进行了水培试验。营养液中设定了6个NaCl浓度:0、100、200、300、400、500 mmol/L。在大麦苗生长至3叶1心时,取样分析测定叶片中活性氧代谢、抗氧化酶活性以及抗坏血酸谷胱甘肽循环变化。【结果】随着NaCl胁迫的增加,2个品系的O_2~-产生速率、H_2O_2含量和MDA含量均逐渐增加,耐盐品系12pj-118的增幅均小于非耐盐品系12pj-045;SOD、POD、CAT、APX、GR活性、As A含量、GSH含量和As A/DHA比值均呈先上升后下降的趋势。12pj-118的SOD、POD、CAT活性在各NaCl浓度胁迫下的增幅大于12pj-045,降幅小于12pj-045;12pj-118的APX、GR活性在同一盐浓度胁迫下的增幅均大于非耐盐品系12pj-045,降幅小于12pj-045;在各NaCl浓度下,12pj-118的As A含量和As A/DHA比值较对照增幅均大于12pj-045;GSH/GSSG比值呈波状变化,12pj-118在较高NaCl浓度下,仍能够维持较高的GSH含量和GSH/GSSG比值。显示12pj-118较12pj-045有较强的耐盐性。【结论】耐盐和非耐盐品系大麦叶片抗氧化及抗坏血酸谷胱甘肽循环系统在NaCl胁迫下的反应不同。在一定范围内,随着盐胁迫增强,耐盐品系12pj-118叶片SOD、POD、CAT、APX和GR活性、As A和GSH含量增幅均大于非耐盐品系12pj-045,降幅小于12pj-045,表明叶片抗氧化及抗坏血酸谷胱甘肽循环系统与大麦幼苗抗盐性密切相关。
        【Objectives】The aim of this study was to compare the response differences of antioxidant and ascorbate-glutathione cycle system to NaCl stress between the salt tolerant and sensitive barley cultivars at the seedling stage.【Methods】A hydroponic experiment was conducted using salt-tolerant cultivar(12pj-118) and non-tolerant cultivar(12pj-045) of barley as materials. Six NaCl stress concentrations were set up, including 0,100, 200, 300, 400 and 500 mmol/L. The plant samples were collected when the forth leaf emerged. The active oxygen metabolism, antioxidant enzyme activity and ascorbate glutathione cycle were determined.【Results】The results showed that the O_2~- production rate, H_2O_2 content and MDA content were increased gradually with the increase of NaCl levels, and the increased rates of the 12pj-118 were lower than those of the 12pj-045. The activities of SOD, POD, CAT, GR and APX, the contents of As A and GSH and the ratios of As A/DHA were increased at first and then decreased. The increased rates of the SOD, POD and CAT activities were much higher in the 12pj-118 under different NaCl concentrations at first, and reduced rates were lower later. The increased rates of APX and GR activities of 12pj-118 were higher than those of 12pj-045 under the same salt concentration,and the reduced rates were lower. Under different NaCl concentrations, the increased rates of the As A contents and As A/DHA ratios of 12pj-118 were higher than those of 12pj-045. The ratios of GSH/GSSG showed a wavy change in two barley cultivars, and the 12pj-118 was able to maintain high GSH contents and GSH/GSSG ratios under higher NaCl concentrations. These results indicated that the salt resistance of 12pj-118 was better than the12pj-045.【Conclusions】The response of NaCl stress was different on antioxidant system and ascorbateglutathione cycle at the seedling stage. At a given range, with the increase of NaCl concentration, the increased rates of the SOD, POD, CAT, APX, GR, As A and GSH of the12pj-118 were much higher than those of the 12pj-045 under different NaCl concentrations, and reduced rates were lower. The results indicated that antioxidant activity and ascorbate glutathione cycle were closely related to salt tolerance of barley seedlings.
引文
[1]陈洁,林栖凤.植物耐盐生理及耐盐机理研究进展[J].海南大学学报(自然科学版),2003,21(2):177-182.Chen J,Lin Q F.Progress on salt tolerance physiology and mechanism of plants[J].Natural Science Journal of Hainan University,2003,21(2):177-182.
    [2]刘爱荣,张远兵,汪建飞,等.适量施氮增强盐胁迫下高羊茅生长和抗氧化能力[J].农业工程学报,2013,29(15):126-135.Liu A R,Zhang Y B,Wang J F,et al.Appropriate nitrogen fertilizer strengthens growth and antioxidative ability of Festuca arundinacea under salt stress[J].Transactions of the Chinese Society of Agricultural Engineering,2013,29(15):126-135.
    [3]Rahnama H,Ebrahimzadeh H.The effect of Na Cl on antioxidant enzyme activities in potato seedlings[J].Biologia Plantarum,2005,49(1):93-97.
    [4]孟祥浩,刘义国,张玉梅,等.不同小麦品种苗期抗氧化特性及根系活力对盐胁迫的响应[J].麦类作物学报,2015,35(8):1168-1175.Meng X H,Liu Y G,Zhang Y M,et al.Responses of antioxidant properties and root activity of different wheat varieties to salt stress atseedling stage[J].Journal of Triticeae Crops,2015,35(8):1168-1175.
    [5]王宁,曹敏建,于佳林,等.Na Cl胁迫对不同耐盐性玉米幼苗膜质过氧化及保护酶活性的影响[J].江苏农业科学,2009,(4):101-103.Wang N,Cao M J,Yu J L,et al.Effect of Na Cl stress on membranous oxidation and the activity of protective enzyme at maize seedling of different salt tolerance[J].Jiangsu Agricultural Sciences,2009,(4):101-103.
    [6]刘晓龙,徐晨,徐克章,等.不同供氮水平下盐胁迫对水稻光合特性和某些生理特性的影响[J].华南农业大学学报,2015,36(2):6-12.Liu X L,Xu C,Xu K Z,et al.Effects of salt stress on photosynthetic characteristics and some physiological traits of rice varieties at different nitrogen levels[J].Journal of South China Agricultural University,2015,36(2):6-12.
    [7]Sergio L,De Paola A,Cantore V,et al.Effect of salt stress on growth parameters,enzymatic antioxidant system,and lipid peroxidation in wild chicory(Cichorium intybus L.)[J].Acta Physiologiae Plantarum,2012,34(6):2349-2358.
    [8]Ozturk L,Demir Y,Unlukara A,et al.Effects of long-term salt stress on antioxidant system,chlorophyll and proline contents in pea leaves[J].Romanian Biotechnological Letters,2012,17(3):7227-7236.
    [9]吕新民,杨怡帆,鲁晓燕,等.Na Cl胁迫对酸枣幼苗As A-GSH循环的影响[J].植物生理学报,2016,52(5):736-744.LüX M,Yang Y F,Lu X Y,et al.Effects of Na Cl stress on the As A-GSH cycle in sour jujube seedlings[J].Plant Physiology Journal,2016,52(5):736-744.
    [10]Ferreira-Silva S L,Voigt E L,Silva E N,et al.Partial oxidative protection by enzymatic and non-enzymatic components in cashew leaves under high salinity[J].Biologia Plantarum,2012,56(1):172-176.
    [11]Shalata A,Mittova V,Volokita M,et al.Response of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii to salt-dependent oxidative stress:the root antioxidative system[J].Physiologia Plantarum,2001,112(4):487-494.
    [12]Khalid O,Loubna B,Lyudmila L,et al.Enzymes of the glutathioneascorbate cycle in leaves and roots of rhizobia-inoculated faba bean plants(Vicia faba L.)under salinity stress[J].European Journal of Soil Biology,2014,60:98-103.
    [13]Omran R G.Peroxide levels and the activities of catalase,peroxidase and indoleacetic acid oxidase during and after chilling cucumber seeding[J].Plant Physiology,1980,65(2):407-408.
    [14]陈建勋,王晓峰.植物生理学实验指导[M].广州:华南科技大学出版社,2002.120-121.Chen J X,Wang X F.Experimental guide for plant physiology[M].Guangzhou:Southern China Science and Technology University Press,2002.120-121.
    [15]林植芳,李双顺,林桂珠,郭俊彦.衰老叶片和叶绿体中H2O2的积累与膜脂过氧化的关系[J].植物生理学报,1988,14(1):16-22.Lin Z F,Li S S,Lin G Z,Guo J Y.The accumulation of hydrogen peroxide in senescing leaves and chloroplasts in relation to lipid peroxidation[J].Acta Phytophysiologyca Sinica,1988,14(1):16-22.
    [16]王爱国,罗广华.植物的超氧物自由基与羟胺反应的定量关系[J].植物生理学通讯,1990,26(2):55-57.Wang A G,Luo G H.Quantitative reation between the reaction of hydroxylamie and superoxide anion radicals in plants[J].Plant Physiology Communication,1990,26(2):55-57.
    [17]李合生主编.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000.119-120.Li H H.Experimental principle and technology of plant physiology and biochemistry[M].Beijing:Higher Education Press,2000.119-120.
    [18]Nakano Y,Asada K.Hydrogen peroxide is scavenged by ascrobatespecific peroxidase in spinach chloroplasts[J].Plant Cell Physiology,1981,22:867-880.
    [19]Foyer C H,Halliwell B.The presence of glutathione and glutathione reductase in chloropasts:aproposed role in ascorbic acid metabolism[J].Planta,1976,133(1):21-25.
    [20]Jin Y H,Tao D L,Hao Z Q,et al.Environmental stresses and redox status of ascorbate[J].Acta Botanica Sinica,2003,45(7):795-801.
    [21]Gossett D R,Millhollon E P,Lucas M C.Antioxidant response to Na Cl stress in salt-tolerant and salt-sensitive cultivars of cotton[J].Crop Science,1994,34(3):706-714.
    [22]周静,徐强,张婷.Na Cl胁迫对不同品种辣椒幼苗生理生化特性的影响[J].西北农林科技大学学报(自然科学版),2015,43(2):120-125.Zhou J,Xu Q,Zhang T.Effect of Na Cl stress on physiological characteristic of seedlings of different pepper varieties[J].Journal of Northwest A&F University(Natural Science Edition),2015,43(2):120-125.
    [23]周海林,王庆祥.Na Cl胁迫对甜、爆、糯玉米幼苗生长及活性氧代谢的影响[J].玉米科学,2011,19(5):87-90.Zhou H L,Wang Q X.Effect of Na Cl stress on plant growth and active oxygen metabolismin seedlings of sweet,popand and glutinous corn[J].Jounal of Maize Sciences,2011,19(5):87-90.
    [24]Foyer C H.Ascorbic acid[A].Alseher R G,Hess J L.Antioxidants in higher plants[C].Boea Raton:CRC Press,1993,31-58.
    [25]Shabala S N,Shabala S I,Martynenko A I,et al.Salinity effect on bioelectric activity,growth,Na+accumulation and chlorophyll IIfluorescence of maize leaves:a comparative survey and prospects for screening[J].Australian Journal of Plant Physiology,1998,25(5):609-616.
    [26]王聪,朱月林,杨立飞,陈磊.Na Cl胁迫对菜用大豆种子抗坏血酸-谷胱甘肽循环的影响[J].植物营养与肥料学报,2010,16(5):1209-1216.Wang C,Lin Y L,Yang L F,Chen L.Effect of Na Cl stress on ascorbate-glutathione cycle in vegetable soybean seeds[J].Plant Nutrition and Fertilizer Science,2010,16(5):1209-1216.
    [27]马进,郑钢,裴翠明,等.抗坏血酸-谷胱甘肽循环在紫花苜蓿突变体耐盐性中的作用[J].植物生理学报,2015,51(10):1749-1756.Ma J,Zheng G,Pei C M,et al.The function of ascorbate-glutathione cycle in salt tolerance of alfalfa mutant[J].Plant Physiology Journal,2015,51(10):1749-1756.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700