用户名: 密码: 验证码:
淬火碳配分工艺下贝氏体/铁素体复相钢的组织和性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Multiphase microstructure and property of low carbon bainite/ferrite steel by quenching and carbon partitioning
  • 作者:田亚强 ; 黎旺 ; 王安东 ; 魏英立 ; 董福涛 ; 陈连生
  • 英文作者:TIAN Ya-qiang;LI Wang;WANG An-dong;WEI Ying-li;DONG Fu-tao;CHEN Lian-sheng;Key Laboratory of the Ministry of Education for Modern Metallurgy Technology,North China University of Science and Technology;
  • 关键词:贝氏体/铁素体复相钢 ; IQ&PB工艺 ; 碳配分 ; 残余奥氏体 ; 瞬时加工硬化指数
  • 英文关键词:bainite/ferrite multiphase steel;;IQ&PB process;;carbon partitioning;;retained austenite;;instantaneous work hardening index
  • 中文刊名:IRON
  • 英文刊名:Journal of Iron and Steel Research
  • 机构:华北理工大学教育部现代冶金技术重点实验室;
  • 出版日期:2018-06-15
  • 出版单位:钢铁研究学报
  • 年:2018
  • 期:v.30
  • 基金:国家自然科学基金资助项目(51574107);; 河北省自然科学基金资助项目(E2016209048,E2016209341,E2017209048);; 河北省教育厅资助项目(BJ2014031);; 河北省高等学校科学技术研究资助项目(QN2016185)
  • 语种:中文;
  • 页:IRON201806008
  • 页数:7
  • CN:06
  • ISSN:11-2133/TF
  • 分类号:54-60
摘要
采用SEM、TEM、EPMA、XRD、室温拉伸等实验手段,对两相区保温-贝氏体区淬火配分(IQ&PB)工艺下不同淬火碳配分温度和时间热处理后的组织和性能进行研究。结果表明,实验用钢经IQ&PB工艺处理后,室温组织主要由铁素体+贝氏体+残余奥氏体组成。两相区保温后,C、Mn元素在马氏体(原奥氏体)中富集,其含量分别为基体平均值的1.47倍和1.16倍。随淬火配分温度降低,贝氏体体积分数增加,组织细化,马氏体/奥氏体小岛数量增多。随着配分温度升高及配分时间增加,实验钢室温组织中残余奥氏体含量增加,抗拉强度降低,断后伸长率提高,加工硬化行为持续发生。综合不同配分温度和时间,400℃淬火进行10min配分处理时,抗拉强度达1 107MPa,伸长率达24%,此时强塑积可达26 568MPa·%。
        The multiphase microstructure and properties of low carbon steel by IQ&PB process under different partitioning temperatures and time were studied by means of SEM,EPMA,XRD and tensile testing.Results show that the microstructures of experimental steel consist of ferrite,bainite and retained austenite.With the increase of the holding time in two-phase region,the C and Mn contents apparently increase in martensite which transformed from austenite,and C and Mn content are 1.47 times and 1.16 times than average value of the base.With the decrease of the quenching and partitioning temperature,the volume fraction of the bainite increases,the microstructure is refined,and the content of M/A islands increases.With the temperature and time increased,the volume fraction of retained austenite at room temperature increases,the tensile strength decreases,the total elongation increases,and work hardening behavior occurrs continuously.When the partitioning time is 30 min and the partitioning temperature is 400℃,the tensile strength of the steel is 1 107 MPa,the elongation is 24%,the product of strength and elongation reaches above 26 568 MPa·%.
引文
[1]Santofimia M J,Speer J G,Clarke A J,et al.Influence of interface mobility on the evolution of austenite-martensite grain assemblies during annealing[J].Acta Materialia,2009,57(15):4548.
    [2]Li W S,Gao H Y,Nakashima H,et al.In-situ study of the deformation-induced rotation and transformation of retained austenite in a low-carbon steel treated by the quenching and partitioning process[J].Materials Science and Engineering,2016,649A:417.
    [3]王卫卫,丁桦,唐正友,等.铁素体贝氏体钢的扩孔性能[J].钢铁研究学报,2009,21(6):48.(Wang W W,Ding H,Tang Z Y,et al.Stretch-flangeability of ferrite-bainite steel[J].Journal of Iron and Steel Research,2009,21(6):48.)
    [4]Hyun D I,Oak S M,Kang S S,et al.Estimation of hole flangeability for high strength steel plates[J].Journal of Materials Processing Technology,2002,130:9.
    [5]Sun X J,Yuan S F,Xie Z J,et al.Microstructure-property relationship in a high strength-high toughness combination ultra-heavy gauge offshore plate steel:The significance of multiphase microstructure[J].Materials Science and Engineering,2017,689A:212.
    [6]Yan S,Liu X,Liu W J,et al.Comparison on mechanical properties and microstructure of a C-Mn-Si steel treated by quenching and partitioning(Q&P)and quenching and tempering(Q&T)processes[J].Materials Science and Engineering,2015,620A:58.
    [7]Speer J,Matlock D K,De Cooman B C,et al.Carbon partitioning into austenite after martensite transformation[J].Acta materialia,2003,51(9):2611.
    [8]Toji Y,Yamashita T,Nakajima K,et al.Effect of Mn partitioning during intercritical annealing on followingγ→αtransformation and resultant mechanical properties of cold-rolled dual phase steels[J].ISIJ International,2011,51(5):818.
    [9]熊自柳,刘宏强,蔡庆伍,等.高强TRIP钢中合金元素的分布规律[J].钢铁研究学报,2011,23(10):44.(Xiong Z L,Liu H Q,Cai Q W,et al.Distribution of chemical element in high strength TRIP steel[J].Journal of Iron and Steel Research,2011,23(10):44.)
    [10]Gui X,Gao G,Guo H,et al.Effect of bainitic transformation during BQ&P process on the mechanical properties in an ultrahigh strength Mn-Si-Cr-C steel[J].Materials Science and Engineering,2017,684A:598.
    [11]Wang H S,Yuan G,Zhang Y X,et al.Microstructural evolution and mechanical properties of duplex TRIP steel produced by strip casting[J].Materials Science and Engineering,2017,692A:43.
    [12]陈连生,张健杨,田亚强,等.预先Mn配分处理对Q&P钢中C配分及残余奥氏体的影响[J].金属学报,2015,51(5):527.(Chen L S,Zhang J Y,Tian Y Q,et al.Effect of Mn prepartitioning on C partitioning and retained austenite of Q&P steels[J].Acta Metallurgica Sinica,2015,51(5):527.)
    [13]田亚强,张宏军,陈连生,等.低碳高强钢合金元素配分行为对残余奥氏体和力学性能的影响[J].金属学报,2014,50(5):531.(Tian Y Q,Zhang H J,Chen L S,et al.Effect of alloy elements partitioning behavior on retained austenite and mechanical property in low carbon high strength steel[J].Acta Metallurgica Sinica,2014,50(5):531.)
    [14]任勇强,谢振家,张宏伟,等.前躯体组织对C-Mn-Si钢组织特征及力学行为的影响[J].金属学报,2013,49(12):1558.(Ren Y Q,Xie Z J,Zhang H W,et al.Effect of precursor microstructure on morphology feature and mechanical property of C-Mn-Si steel[J].Acta Metallurgica Sinica,2013,49(12):1558.)
    [15]任勇强,谢振家,尚成嘉.低碳钢中残余奥氏体的调控及对力学性能的影响[J].金属学报,2012,48(9):1074.(Ren Y Q,Xie Z J,Shang C J,et al.Regulation of retained austenite and its effect on the mechanical properties of low carbon steel[J].Acta Metallurgica Sinica,2012,48(9):1074.)
    [16]谢振家,尚成嘉,周文浩,等.低合金多相钢中残余奥氏体对塑性和韧性的影响[J].金属学报,2016,52(2):224.(Xie Z J,Shang C J,Zhou W H,et al.Effect of retained austenite on ductility and toughness of a low alloyed multiphase steel[J].Acta Metallurgica Sinica,2016,52(2):224.)
    [17]Xie Z J,Yuan S F,Zhou W H,et al.Stabilization of retained austenite by the two-step intercritical heat treatment and its effect on the toughness of a low alloyed steel[J].Materials and Design,2014,59:193.
    [18]聂志水,田晓青,周禾丰,等.301奥氏体不锈钢薄板拉伸强度与冷轧硬度之间的关系[J].钢铁研究学报,2012,24(4):22.(Nie Z S,Tian X Q,Zhou H F,et al.Relationship between tensile strength and cold-rolled hardness of 301austenitic stainless steel sheet[J].Journal of Iron and Steel Research,2012,24(4):22.)
    [19]Mejía I,Maldonado C,Benito J A,et al.Determination of the work hardening exponent by the Hollomon and differential Crussard-Jaoul analyses of cold drawn ferrite-pearlite steels[J].Materials Science Forum,2006,509:37.
    [20]胡超,杨钢,聂学青,等.ECAP制备TWIP钢的力学性能研究[J].钢铁研究学报,2011,23(1):47.(Hu C,Yang G,Nie X Q,et al.Investigation on mechanical properties of TWIP steel using ECAP[J].Journal of Iron and Steel Research,2012,23(1):47.)
    [21]赵征志,佟婷婷,赵爱民,等.1300MPa级0.14C-2.72Mn-1.3Si钢的显微组织和力学性能及加工硬化行为[J].金属学报,2014,50(10):1153.(Zhao Z Z,Tong T T,Zhao A M,et al.Microstructure mechanical properties and work hardening behavior of 1300MPa grade 0.14C-2.72Mn-1.3Si steel[J]Acta Metallurgica Sinica,2014,50(10):1153.)
    [22]Tirumalasetty G K,Huis M A V,Kwakernaak C,et al.Deformation-induced austenite grain rotation and transformation in TRIP-assisted steel[J].Acta Materialia,2012,60(3):1311.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700