用户名: 密码: 验证码:
太阳风暴对电离层及BDS用户定位影响分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influence analysis of solar storms on ionosphere and BDS user's positioning
  • 作者:姜意 ; 罗方妧 ; 刘宸 ; 王威 ; 王宇谱
  • 英文作者:JIANG Yi;LUO Fangyuan;LIU Chen;WANG Wei;WANG Yupu;Beijing Satellite Navigation Center;
  • 关键词:太阳风暴 ; 电离层延迟 ; 北斗卫星导航系统 ; 位置精度因子 ; 伪距定位
  • 英文关键词:solar storm;;ionospheric delay;;BeiDou navigation satellite system;;position dilution of precision;;pseudo-range positioning
  • 中文刊名:CHWZ
  • 英文刊名:Journal of Navigation and Positioning
  • 机构:北京卫星导航中心;
  • 出版日期:2019-05-31
  • 出版单位:导航定位学报
  • 年:2019
  • 期:v.7;No.26
  • 语种:中文;
  • 页:CHWZ201902011
  • 页数:6
  • CN:02
  • ISSN:10-1096/P
  • 分类号:71-76
摘要
为研究太阳风暴对导航定位带来的影响,提高导航定位的精度,以2017年9月6日和2017年9月10日太阳爆发的X9.3级大耀斑和X8.2级耀斑为例,运用北京、三亚、成都BDS实测数据,研究分析太阳风暴前后电离层变化、BDS卫星可用情况,及不同定位模式下伪距定位结果的差异。结果表明:此次太阳风暴引起电离层电子浓度10~30个TECU的异常变化,严重时可达60个TECU;对BDS GEO卫星的可用性造成一定影响,但对位置精度因子的影响可忽略不计;影响BDS单频用户定位精度,但采用双频模式和单频增强模式可有效减小电离层异常带来的影响。
        In order to study on the influence of solar storms on navigation positioning for improving the accuracy of navigation, taking the solar flares of class X9.3 broken out on Sept. 6, 2017 and class X8.2 on Sept. 10, 2017 as examples, with the observations of Beijing,Sanya and Chengdu, the paper analyzed the ionospheric changes before and after the solar storms, the availability of BDS satellites and the differences of pseudo-range positioning results under different positioning modes. Results showed that: the solar storms caused the anomalous variation of ionospheric electron concentration from 10 to 30 TECU, and in severe cases it's up to 60 TECU; the availability of BDS GEO satellites was impacted, while the influence on PDOP could be negligible; the positioning accuracy of BDS single frequency users could be effected, however, the modes of dual frequency and single frequency enhancement could be used to effectively reduce the influence of ionospheric anomalies.
引文
[1]刘立波,万卫星,陈一定,等.电离层与太阳活动性关系[J].科学通报,2011,56(7):477-487.
    [2]解妍琼.太阳风暴的综合研究[D].北京:中国科学院空间科学与应用研究中心,2007.
    [3]徐彤.中低纬电离层模型及其异常现象相关研究[D].西安:西安电子科技大学,2009.
    [4]PROELSS G W.Ionospheric F-region storms,handbook of atmospheric electrody-namics[M].Boca Raton:CRC Press,1995:195-248.
    [5]FULLER-ROWELL T J,CODRESCU M V,RISHBETH H,et al.On the seasonal response of the thermosphere and ionosphere to geomagnetic storms[J].Journal of Geophysical Research Space Physics,1996,101(2):2343-2353.
    [6]MARUYAMA T,MA G.Signature of TEC storm on 6 November 2001 derived from dense GPS receiver network and ionosonde chain over Japan[J].Journal of Geophysical Research Space Physics,2004,109(10302):1-11.
    [7]李正.电离层暴及“行星际扰动-磁暴-电离层暴”的观测研究[D].北京:中国科学院研究生院(空间科学与应用研究中心),2011.
    [8]SKONE S,YOUSUF R,COSTER A.Performance evaluation of the wide area augmentation system for ionospheric storm events[J].Positioning,2004,3(1/2):251-258.
    [9]董恩强,常志巧,李晓杰,等.太阳风暴期间的北斗电离层建模优化[J].中国科学:物理学力学天文学,2015,45(7):079504-079504.
    [10]吴晓莉,韩春好,平劲松.GEO卫星区域电离层监测分析[J].测绘学报,2013,42(1):13-18.
    [11]蔡昌盛,李征航,赵晓峰.利用GPS组合观测值建立区域电离层模型研究[J].测绘工程,2003,12(1):13-16.
    [12]刘宸,李海峰,冯绪,等.Klobuchar电离层模型精化进展[J].测绘科学技术学报,2017,34(5):455-460.
    [13]安玉柱,张韧,王伟民,等.太阳黑子数与电离层TEC的相关性分析[J].理工大学学报(自然科学版),2012,13(5):571-576.
    [14]王伟民,徐振中,张韧,等.武汉站第23周电离层TEC与太阳及地磁活动的相关性分析[J].空间科学学报,2012,32(1):40-47.
    [15]CHEN Y,LIU L,LE H,et al.Discrepant responses of the global electron content to the solar cycle and solar rotation variations of EUV irradiance[EB/OL].[2018-08-18].https://www.researchgate.net/publication/277979985_Discrepant_responses_of_the_global_electron_content_to_the_solar_cycle_and_solar_rotation_variations_of_EUV_irradiance.
    [16]LIU C,LIU C,FENG X,et al.Quality evaluation of IGS GIMs based on the statistical characteristics of VTEC/RMSeigenvalues:a macro perspective[J].Radio Science,2018,53(6):790-803.DOI:https://doi.org/10.1029/2017RS006305.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700