用户名: 密码: 验证码:
主链组成对低磺化度磺化芳香族聚合物质子交换膜性能的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of main chain composition on the performance of proton exchange membrane of sulfonated aromatic polymer with low degree of sulfonation
  • 作者:侯敬贺 ; 刘闪闪 ; 孙翔 ; 肖振雨 ; 丁会利
  • 英文作者:HOU Jinghe;LIU Shanshan;SUN Xiang;XIAO Zhenyu;DING Huili;Institute of Polymer Materials and Engineering, College of Chemistry, Hebei University of Technology;
  • 关键词:磺化芳香族共聚物 ; 亲核缩聚 ; 质子传导率 ; 质子交换膜
  • 英文关键词:sulfonated aromatic copolymer;;nucleophilic condensation;;proton conductivity;;proton exchange membrane
  • 中文刊名:HGJZ
  • 英文刊名:Chemical Industry and Engineering Progress
  • 机构:河北工业大学化工学院高分子材料与工程研究所;
  • 出版日期:2019-04-05
  • 出版单位:化工进展
  • 年:2019
  • 期:v.38;No.331
  • 基金:河北省高等学校科学技术研究项目(ZD2018044);; 河北省科技计划自筹经费项目(16211240)
  • 语种:中文;
  • 页:HGJZ201904030
  • 页数:9
  • CN:04
  • ISSN:11-1954/TQ
  • 分类号:264-272
摘要
通过改变共聚单体种类,探究主链元素种类对聚合物质子交换膜性能的影响。以3,3'-二磺酸基钠盐-4,4'-二氟二苯砜为磺化单体,4,4'-二氟二苯砜为非磺化单体,4,4'-二羟基二苯醚或4,4'-二巯基二苯硫醚为共聚单体,通过亲核缩聚反应成功可控制备出磺化度分别为30%和50%的磺化聚芳醚砜(SPES)与磺化聚芳硫醚砜(SPTES)。采用流延法制备了两种聚合物的透明坚韧的质子交换膜。研究发现两种聚合物膜均显示出了良好的力学性能以及较为适中的吸水率与溶胀度。两种聚合物质子交换膜的起始分解温度达到250℃,具有良好的热稳定性。随磺化度的升高,两种聚合物膜的吸水率、溶胀率以及质子传导率均升高。由于主链硫较氧原子与苯环的共轭作用更强以及供电子硫原子与吸电子基团的相互作用,SPTES膜较SPES膜表现出更高的玻璃化转变温度(Tg)、更低的溶胀率以及更高质子传导率。其中SPES-50与SPTES-50在80℃、100%RH条件下,质子传导率分别为0.136S/cm与0.142S/cm,表明其作为质子交换膜具有潜在的应用前景。
        The effects of main chain element types on the properties of polymer proton exchange membranes with low degree of sulfonation were explored through changing the kinds of comonomers. 3,3'-disulfonicacidsodiumsalt-4,4'-difluorodiphenylsulfonewasasulfonatedmonomer,4,4'-difluorodiphenyl sulfonewasanon-sulfonatedmonomer,4,4'-Dihydroxydiphenyletheror4,4'-dimercaptodiphenyl sulfide was a comonomer, and the sulfonated aromatic copolymer having a sulfonation degree of 30% and 50%,respectively, can be controlled by a nucleophilic polycondensation reaction. A transparent and tough proton exchange membrane was prepared by the solution casting method. Systematic characterizations and measurements suggested that both polymer membranes showed good mechanical properties as well as moderate water absorption and swelling. The two polymer proton exchange membranes had an initial decomposition temperature of 250℃ and good thermal stability. With the increase of the degree of sulfonation, the water absorption, swelling ratio and proton conductivity of the two polymer membranes increased. Since the main chain sulfur was more conjugated to the oxygen atom and the benzene ring and the interaction between the electron donating sulfur atom and the electron withdrawing group, the SPTES membrane exhibited a higher glass transition temperature(Tg) than the SPES membrane, and a lower swelling ratio and higher proton conductivity. The proton conductivity of SPES-50 and SPTES-50 were0.136 S/cm and 0.142 S/cm at 80℃ and 100% RH, respectively. SPES-50 and SPTES-50 membranes all could be applied as promising PEMs for fuel cells. This study may contribute to the rational design of proton-conducting materials.
引文
[1] LABERTY-ROBERT C, VALLéK, PEREIRA F, et al. Design and properties of functional hybrid organic-inorganic membranes for fuel cells[J]. Chemical Society Reviews, 2011, 40(2):961-1005.
    [2] XU J,CHENG H,MA L,et al. Construction of a new continuous proton transport channel through a covalent crosslinking reaction between carboxyl and amino groups[J]. International Journal of Hydrogen Energy,2013,38(24):10092-10103.
    [3] HE G,ZHAO J,HU S, et al. Functionalized carbon nanotube via distillation precipitation polymerization and its application in nafionbased composite membranes[J]. ACS Applied Materials&Interfaces,2014,6(17):15291-15301.
    [4] LI C,ZHANG Y,LIU X,et al. Cross-linked fully aromatic sulfonated polyamide as a highly efficiency polymeric filler in SPEEK membrane for high methanol concentration direct methanol fuel cells[J]. Journal of Materials Science,2018,53(7):5501-5510.
    [5]吴魁,解东来.高温质子交换膜研究进展[J].化工进展, 2012, 31(10):2202-2206.WU Kui, XIE Donglai. Research progress in high temperature proton exchange membranes[J]. Chemical Industry and Engineering Progress,2012, 31(10):2202-2206.
    [6] BAKANGURA E, WU L, GE L, et al. Mixed matrix proton exchange membranes for fuel cells:state of the art and perspectives[J]. Progress in Polymer Science, 2016, 57:103-152.
    [7] EINSLA M L, YU S K, HAWLEY M, et al. Toward improved conductivity of sulfonated aromatic proton exchange membranes at low relative humidity[J]. Chemistry of Materials, 2008, 20(17):5636-5642.
    [8] BAI Z W, DURSTOCK M F, DANG T D. Proton conductivity and properties of sulfonated polyarylenethioether sulfones as proton exchange membranes in fuel cells[J]. Journal of Membrane Science,2006, 281(1):508-516.
    [9] ZHANG H, MA C, WANG J, et al. Enhancement of proton conductivity of polymer electrolyte membrane enabled by sulfonated nanotubes[J]. International Journal of Hydrogen Energy, 2014, 39(2):974-986.
    [10]陶丹,向雄志,王雷.磺酸基在侧链萘环上的磺化聚芳醚质子交换膜的制备与性能研究[J].高分子学报, 2014(3):326-332.TAO Dan, XIANG Xiongzhi, WANG Lei. Synthesis and characterization of poly(arylene ether)s proton exchange membranes with sulfonic groups attached on pendent naphthyl rings[J]. Acta Polymerica Sinica, 2014(3):326-332.
    [11]沈斌,汪称意,徐常,等.一类侧链型磺化聚芳醚砜质子交换膜的合成及表征[J].高分子学报, 2016(10):1409-1417.SHEN Bin, WANG Chenyi, XU Chang, et al. Synthesis and characterization of a side-chain type sulfonated poly(arylene ether sulfone)s for proton exchange membranes[J].Acta Polymerica Sinica,2016(10):1409-1417.
    [12]孙园园,吴雪梅,甄栋兴,等.静电层层自组装改性SPPESK/PWA质子交换膜[J].化工进展, 2015, 34(12):4285-4289.SUN Yuanyuan, WU Xuemei, ZHEN Dongxing, et al. Modification of SPPESK/PWA proton exchange membrane by layer-by-layer selfassembly[J]. Chemical Industry and Engineering Progress, 2015, 34(12):4285-4289.
    [13] DAI H, ZHANG H, LUO Q, et al. Properties and fuel cell performance of proton exchange membranes prepared from disulfonated poly(sulfide sulfone)[J]. Journal of Power Sources, 2008, 185(1):19-25.
    [14] WILES K B, WANG F, MCGRATH J E. Directly copolymerized poly(arylene sulfide sulfone)disulfonated copolymers for PEM-based fuel cell systems.Ⅰ. Synthesis and characterization[J]. Journal of Polymer Science Part A:Polymer Chemistry, 2005, 43(43):2964-2976.
    [15] BAI Z W, HOUTZ M D, MIRAU P A, et al. Structures and properties of highly sulfonated poly(arylenethioethersulfone)s as proton exchange membranes[J]. Polymer, 2007, 48(22):6598-6604.
    [16] NORDDIN M N A M, ISMAIL A F, RANA D, et al. The effect of blending sulfonated poly(ether ether ketone)with various charged surface modifying macromolecules on proton exchange membrane performance[J]. Journal of Membrane Science, 2009, 328(1):148-155.
    [17] ZHAO Y, JIANG Z, LIN D, et al. Enhanced proton conductivity of the protonexchangemembranesbythephosphorylatedsilicasubmicrospheres[J]. Journal of Power Sources, 2013, 224(15):28-36.
    [18] LI X G, SHAO H T, BAI H, et al. High-resolution thermogravimetry of polyethersulfone chips in four atmospheres[J]. Journal of Applied Polymer Science, 2010, 90(13):3631-3637.
    [19] WEI Y C, SHANG Y B, ZHANG H Y, et al. Modified nanocrystal cellulose/fluorene-containingsulfonatedpoly(etheretherketoneketone)composites for proton exchange membranes[J]. Applied Surface Science, 2017, 416(15):996-1006.
    [20] SHEN L, XIAO G, SUN G. Sulfonated poly(arylene thioether ketone ketone sulfone)s for proton exchange membranes with high oxidative stability[J]. E-Polymers, 2005, 5(1):321-330.
    [21] PARNIAN M J, ROWSHANZAMIR S, GASHOUL F. Comprehensive investigation of physicochemical and electrochemical properties of sulfonated poly(ether ether ketone)membranes with different degrees of sulfonation for proton exchange membrane fuel cell applications[J].Energy, 2017, 125(15):614-628
    [22] TAKIMOTO N, WU L, OHIRA A, et al. Hydration behavior of perfluorinated and hydrocarbon-type proton exchange membranes:relationship between morphology and proton conduction[J]. Polymer,2009, 50(2):534-540.
    [23] MOLLáS, COMPA?V. Nanocomposite SPEEK-based membranes for direct methanol fuel cells at intermediate temperatures[J]. Journal of Membrane Science, 2015, 492(15):123-136.
    [24] HASANI-SADRABADI M M, DASHTIMOGHADAM E, SARIKHANI K, et al. Electrochemical investigation of sulfonated poly(ether ether ketone)/clay nanocomposite membranes for moderate temperature fuel cell applications[J]. Journal of Power Sources, 2010, 195(9):2450-2456.
    [25] FENG S, SHEN K, WANG Y, et al. Concentrated sulfonated poly(ether sulfone)s as proton exchange membranes[J]. Journal of Power Sources, 2013, 224(15):42-49.
    [26] LIN H L, YU T L, HUANG C H, et al. Morphology study of Nafion membranes prepared by solutions casting[J]. Journal of Polymer Science Part B:Polymer Physics, 2010, 43(21):3044-3057.
    [27] WANG J, JIANG S, ZHANG H, et al. Enhancing proton conduction and methanol barrier performance of sulfonated poly(ether ether ketone)membrane by incorporated polymer carboxylic acid spheres[J].Journal of Membrane Science, 2010, 364(1):253-262.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700