用户名: 密码: 验证码:
PEMFC用抗溺水性功能化Pt/C催化剂的制备及表征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation and characterization of anti-flooding functional Pt/C catalyst for PEMFC
  • 作者:卢璐 ; 吴磊 ; 史继诚 ; 徐洪峰 ; 丛涛泉
  • 英文作者:LU Lu;WU Lei;SHI Ji-cheng;XU Hong-feng;CONG Tao-quan;Liaoning Province Key Laboratory of New Energy Battery,Dalian Jiaotong University;
  • 关键词:质子交换膜燃料电池 ; 催化剂 ; 抗溺水性 ; 过氧化氢 ; 水合肼
  • 英文关键词:proton exchange membrane fuel cell;;catalyst;;anti-flooding;;hydrogen peroxide;;hydrazine hydrate
  • 中文刊名:CLGC
  • 英文刊名:Journal of Materials Engineering
  • 机构:大连交通大学辽宁省新能源电池重点实验室;
  • 出版日期:2019-06-04 12:00
  • 出版单位:材料工程
  • 年:2019
  • 期:v.47;No.433
  • 基金:国家重点研发计划(2016YFB0101207);; 辽宁省教育厅项目(JDL2016013);; 大连市青年科技之星项目(2016RQ056)
  • 语种:中文;
  • 页:CLGC201906007
  • 页数:7
  • CN:06
  • ISSN:11-1800/TB
  • 分类号:67-73
摘要
催化剂的碳载体腐蚀是Pt/C催化剂催化性能下降的重要原因,并且亲水性的催化剂增加了质子交换膜燃料电池氧电极发生水淹的风险。利用过氧化氢对XC-72碳进行氧化预处理,负载Pt后,进一步用水合肼对Pt/C催化剂还原,制备耐蚀性和抗溺水性的Pt/C催化剂。对红外光谱吸收峰进行比较可知,经双氧水处理后,XC-72碳表面的含氧官能团数量增加,其接触角小于未经处理的XC-72碳;进一步用水合肼还原氧化后的XC-72碳,接触角较氧化的XC-72碳增大22.4°,抗溺水性增强。由比表面积测定可知,双氧水处理XC-72碳,比表面积下降,但中孔比例增加,有利于Pt的负载。水合肼还原后的Pt/C催化剂较还原之前的Pt/C催化剂抗溺水性增强,接触角增大6.2°。经2000周次循环伏安扫描,水合肼还原后的Pt/C催化剂电化学比表面损失减小,耐久性提高。
        The important reason of the reduction of the catalytic performance of Pt/C catalyst is carbon carrier corrosion. The risk of oxgen flooding in proton-exchange membrane fuel cellsis also increased by hydrophilicity of this catalyst. The Pt/C catalyst was subsequently reduced using hydrazine hydrate to make Pt/C corrosion resistant and anti-flooding. Comparison by infrared spectra of absorption peaks shows the increased number of oxygen-containing functional groups in the XC-72 carbon surface treated with hydrogen peroxide. Its measured contact angle is less than that of untreated XC-72 carbon. Reduction of oxidized XC-72 carbon with hydrazine hydrate shows that the contact angle is increased by 22.4° compared with that of the oxidized XC-72 carbon, indicating anti-flooding enhancement. As shown in the specific surface area measurement, the specific surface area of XC-72 is reduced by the hydrogen peroxide treatment but its mespopore ratio is increased, which favors the carrier load Pt. The anti-flooding of Pt/C catalyst after reduction with hydrazine hydrate is stronger than that before reduction, indicating an increase in contact angle by 6.2°. After 2000 cycles of cyclic voltammetry, the electrochemical specific surface loss is decreased and the durability is improved for the reduced Pt/C catalyst by hydrazine hydrate.
引文
[1] 衣宝廉.燃料电池:原理·技术·应用[M].北京:化学工业出版社,2003.YI B L.Fuel cell:principle,technology application [M] .Beijing Chemical Industry Press,2003.
    [2] FREY T.LINARDI M.Effects of membrane electrode assembly preparation on the polymer electrolyte membrane fuel cell performance[J].Electrochimica Acta,2004,50(1):99-105.
    [3] 侯明,俞红梅,衣宝廉.车用燃料电池技术的现状与研究热点[J].化学进展,2009,21(11):2319-2332.HOU M,YU H M,YI B L.Status and research hotspot of vehicle fuel cell technology [J].Progress in Chemistry,2009,21(11):2319-2332.
    [4] 王诚,赵波,张剑波.质子交换膜燃料电池膜电极的关键技术[J].科技导报,2016,34(6):62-68.WANG C,ZHAO B,ZHANG J B.Key techniques for membrane electrode of proton exchange membrane fuel cell[J] .Science and Technology Review,2016,34(6):62-68.
    [5] 张东方.质子交换膜燃料电池用催化剂及其电极的研究进展[J] .能源化工,2003,24(6):33-35.ZHANG D F.Studies on catalysts and electrodes for proton exchange membrane fuel cells [J] .Energy and Chemical Indus-try,2003,24(6):33-35.
    [6] 吕海峰,程年才,木士春,等.质子交换膜燃料电池Pd修饰Pt/C催化剂的电催化性能[J].化学学报,2009,67(14):1680-1684.LV H F,CHENG N C,MU S C,et al.Electrocatalytic properties of Pd-modified Pt / C catalyst for proton exchange membrane fuel cell [J].Acta Chimica Sinica,2009,67 (14):1680-1684.
    [7] 郭建伟,毛宗强,徐景明.采用交流阻抗法对质子交换膜燃料电池(PEMFC)电化学行为的研究[J] .高等学校化学学报,2003,24(8):1477-1481.GUO J W,MAO Z Q,XU J M.Study on electrochemical behavior of proton exchange membrane fuel cell (PEMFC) by AC imped-ance method [J].Acta Chimica Sinica,2003,24(8):1477-1481.
    [8] WANG C Y.Fundamental models for fuel cell engineering[J].Chemical Reviews,2004,35(50):4727-4765.
    [9] KIM K H,KIM H J,LEE K Y,et al.Effect of Nafion gradient in dual catalyst layer on proton exchange membrane fuel cell performance[J] .International Journal of Hydrogen Energy,2008,33(11):2783-2789.
    [10] XU L,FANG C,HU J,et al.Parameter extraction and uncert-ainty analysis of a proton exchange membrane fuel cell system based on Monte Carlo simulation[J].International Journal of Hydrogen Energy,2017,42(4):2309-2326.
    [11] SONG M,PEI P,ZHA H,et al.Water management of proton exchange membrane fuel cell based on control of hydrogen press-ure drop[J].Journal of Power Sources,2014,267(11):655-663.
    [12] 侯明,吴金锋,衣宝廉,等.质子交换膜燃料电池新型静态排水结构[J].电源技术,2002,26(3):131-133.HOU M,WU J F,YI B L,et al.New static drainage structure of proton exchange membrane fuel cell [J] .Power Engineering,2002,26(3):131-133.
    [13] BRETT D J L,ATKINS S,BRANDON N P,et al.Localized impedance measurements along a single channel of a solid poly-mer fuel cell[J].Electrochemical and Solid-State Letters,2003,6(4):A63-A66.
    [14] CHA S W,KIM D,PRINZ F B,et al.Water management in proton exchange membrane fuel cells using integrated electroosmotic pumping[J].Journal of Power Sources,2016,161(1):191-202.
    [15] LITSTER S,BUIE C R,FABIAN T,et al.Active water manag-ement for PEM fuel cells[J].Journal of the Electrochemical Society,2007,154(10):B1049-B1058.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700