用户名: 密码: 验证码:
碎屑流冲击柔性网的离散元仿真研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical investigation on flexible barriers impacted by dry granular flows using DEM modeling
  • 作者:肖思友 ; 苏立君 ; 姜元俊
  • 英文作者:XIAO Si-you;SU Li-jun;JIANG Yuan-jun;Key Lab.of Mountain Hazards and Earth Surface Processes, Chinese Academy of Sciences;Institute of Mountain Hazards and Environment, CAS;University of Chinese Academy of Sciences;CAS Center for Excellence in Tibetan Plateau Earth Sciences;
  • 关键词:碎屑流 ; 柔性网 ; 离散元方法 ; 黏结模型 ; 冲击
  • 英文关键词:granular flow;;flexible barrier;;DEM;;bonding model;;impact
  • 中文刊名:YTGC
  • 英文刊名:Chinese Journal of Geotechnical Engineering
  • 机构:中国科学院山地灾害与地表过程重点实验室;中国科学院成都山地灾害与环境研究所;中国科学院大学;中国科学院青藏高原地球科学卓越创新中心;
  • 出版日期:2018-06-22 11:54
  • 出版单位:岩土工程学报
  • 年:2019
  • 期:v.41;No.334
  • 基金:中科院西部之光“一带一路”国际合作团队项目(Y8R3640640);中科院“百人计划”项目(Y9R2120120);; 国家自然科学基金项目(41502334)
  • 语种:中文;
  • 页:YTGC201903019
  • 页数:8
  • CN:03
  • ISSN:32-1124/TU
  • 分类号:128-135
摘要
柔性网和碎屑流相互作用包括碎屑流散体运动冲击和柔性网连续大变形两个复杂的力学过程。由于目前柔性网和碎屑流相互作用的力学理论计算方法尚不成熟,为此提出一种利用Hertz–Mindlin黏结接触模型模拟柔性结构,利用无滑移的Hertz–Mindlin模型模拟碎屑流的离散元仿真方法。选择有横向支撑锚索的沟道碎屑流防护结构进行模拟计算,并定义碎屑流动能变化率Wk和碎屑流死区质量与碎屑流总质量之比Fm来对比碎屑流冲击柔性网和刚性挡墙的动态响应过程。结果表明:与冲击刚性挡墙不同的是,碎屑流冲击柔性网时冲击荷载首先沿坡面方向冲击,使承力锚索在水平方向和竖直方向均产生较大的变形。随后冲击荷载作用方向逐渐转变为以水平冲击为主,使堆积区上部锚索的水平偏移值和碎屑流在水平向的堆积范围增大。利用经验公式求得的作用于刚性挡墙的最大法向冲击合力与数值计算结果较为一致,而利用经验公式求得的作用于柔性网的最大法向冲击合力比数值计算结果大45%以上,因此利用经验公式计算碎屑流作用于柔性网的最大法向冲击力时,需要重新确定动土压力系数CD和弗洛德数Fr之间的关系。
        The interaction of flexible barriers and granular flows has two complex mechanical processes: the continuous large deformation of flexible barriers and the discrete motion of particles. Owing to the fact that the theoretical method for the interaction of flexible barriers and granular flows is immature, a DEM method is proposed. In this method, the Hertz-Mindlin bonding particle model is employed to simulate the flexible barriers. The no-slip Hertz-Mindlin model is used to simulate the granular flows. The flexible barrier with lateral anchorage cable is selected. The change rate of kinetic energy Wk and the ratio of the dead zone mass friction Fm to the total mass of the granular flows are defined to compare the dynamic impact response of flexible barriers to retaining wall. The results show that the impact of granular flows causes large horizontal deformation and vertical deformation of cables firstly. Then, the direction of impact load converts to the horizontal one, so that the horizontal deflection in the upper dead zone of cables and the horizontal accumulation range of granulars increase. The total normal force impacting on the retaining wall calculated by the empirical formula agrees with that of the numerical method. Based on the results of numerical simulation and theoretical calculation, the maximal total normal force impacting the flexible barrier calculated by the empirical formula is over 45% greater than the maximum total normal force calculated by numerical simulation. Therefore, it is needed to reappraise the relationship between dynamic pressure coefficient CD and Froude number Fr before calculating the maximum normal force using the empirical formula.
引文
[1]KWAN J S H,CHAN S L,CHEUK J C Y,et al.A case study on an open hillside landslide impacting on a flexible rockfall barrier at Jordan Valley,Hong Kong[J].Landslides,2014,11(6):1-14.
    [2]GOTTARDI G,GOVONI L.Full-scale modelling of falling rock protection barriers[J].Rock Mechanics&Rock Engineering,2010,43(3):261-274.
    [3]CANELLI L,FERRERO A M,MIGLIAZZA M,et al.Debris flow risk mitigation by the means of rigid and flexible barriers-experimental tests and impact analysis[J].Natural Hazards&Earth System Sciences,2012,12(5):1693-1699.
    [4]MARGRETH S,ROTH A.Interaction of flexible rockfall barriers with avalanches and snow pressure[J].Cold Reg Sci Technol,2008,51(2):168-177.
    [5]BOETTICHER A,HüBL J,WENDELER C,et al.Modeling the impact of shallow landslides on flexible protection barriers[C]//Mathematical Geosciences at the Crossroads of Theory and Practice.Salzburg,2011:659-670.
    [6]NG C W W,SONG D R,CHOI C E,et al.Impact mechanisms of granular and viscous flows on rigid and flexible[J].Canadian Geotechnical Journal,2017,54(2):188-206.
    [7]NG C W W,SONG D R,CHOI C E,et al.A novel flexible barrier for landslide impact in centrifuge[J].Géotechnique,2016,6(3):1-5.
    [8]ASHWOOD W,HUNGR O.Estimating the total resisting force in a flexible barrier impacted by a granular avalanche using physical and numerical modeling[J].Canadian Geotechnical Journal,2016,53(10):1700-1717.
    [9]刘成清,陈林雅,齐欣.落石冲击作用下不同连接方式被动防护网的受力分析[J].中国铁道科学,2016,37(2):17-25.(LIU Cheng-qing,CHEN Lin-ya,QI Xin.Force analysis of passive protection nets with different connection modes under rockfall impact[J].China Railway Science,2016,37(2):17-25.(in Chinese))
    [10]赵世春,余志祥,韦韬,等.被动柔性防护网受力机理实验研究与数值计算[J].土木工程学报,2013(5):122-128.(ZHAO Shi-chuan,YU Zhi-xiang,WEI Tao,et al.Test study of force mechanism and numerical calculation of safety netting system[J].China Civil Engineering Journal,2013(5):122-128.(in Chinese))
    [11]赵世春,余志祥,赵雷,等.被动防护网系统强冲击作用下的传力破坏机制[J].工程力学,2016,33(10):24-33.(ZHAO Shi-chuan,YU Zhi-xiang,ZHAO Lei,et al.Damage mechanism of rockfall barriers under strong impact loading[J].Engineering Mechanics,2016,33(10):24-33.(in Chinese))
    [12]DU Y,MA L,ZHENG J Y,et al.Coupled simulation of explosion-driven fracture of cylindrical shell using SPH-FEMmethod[J].International Journal of Pressure Vessels&Piping,2016(139/140):28-35.
    [13]ORTIZ R,ORTIZ R,COMBESCURE A.Three dimensional SPH-FEM gluing for simulation of fast impacts on concrete slabs[J].Computers&Structures,2011,89(23):2484-2494.
    [14]BERTRAND D,TRAD A,LIMAM A,et al.Full-scale dynamic analysis of an innovative rockfall fence under impact using the discrete element method:from the local scale to the structure scale[J].Rock Mechanics&Rock Engineering,2012,45(5):885-900.
    [15]THOENI K,GIACOMINI A,LAMBERT C,et al.A 3Ddiscrete element modelling approach for rockfall analysis with drapery systems[J].International Journal of Rock Mechanics&Mining Sciences,2014,68(2):107-119.
    [16]ALBABA A,LAMBERT S,KNEIB F,et al.DEM modeling of a flexible barrier impacted by a dry granular flow[J].Rock Mechanics&Rock Engineering,2017(5):1-20.
    [17]王国强,赫万军,王继新.离散单元法及其在EDEM上的实践[M].西安:西北工业大学出版社,2010.(WANGGuo-qiang,HAO Wan-jun,WANG Ji-xin.Discrete element method and its practice on EDEM[M].Xi'an:Northwestern Polytechnical University Press,2010.(in Chinese))
    [18]EDEM Solution.User's Manual,EDEM 2.7[M].Edinburgh:EDEM Consulting Group Inc,2015.
    [19]POTYONDY D O,CUNDALL P A.A bonded-particle model for rock[J].International Journal of Rock Mechanics&Mining Sciences,2004,41(8):1329-1364.
    [20]European Organisation for Technical Assessment,ETAG027.Guideline for European technical approval of falling rock protection kits[S].2008.
    [21]BRIGHENTI R,SEGALINI A,FERRERO A M.Debris flow hazard mitigation:a simplified analytical model for the design of flexible barriers[J].Computers&Geotechnics,2013,54(54):1-15.
    [22]BI Y Z,HE S M,LI X P,et al.Geo-engineered buffer capacity of two-layered absorbing system under the impact of rock avalanches based on discrete element method[J].Journal of Mountain Science,2016,13(5):917-929.
    [23]毕钰璋,何思明,李新坡,等.约束条件下粗细混合颗粒动力机理分析[J].岩土工程学报,2016,38(3):529-536.(BI Yu-zhang,HE Si-ming,LI Xin-po,et al.Kinetic mechanism of mixed particles under constraint conditions[J].Chinese Journal of Geotechnical Engineering,2016,38(3):529-536.(in Chinese))
    [24]NG C W W,CHOI C E,LIU L H D,et al.Influence of particle size on the mechanism of dry granular run-up on a rigid barrier[J].Géotechnique,2017,7(1):1-11.
    [25]JIANG Y J,TOWHATA I.Experimental study of dry granular flow and impact behavior against a rigid retaining wall[J].Rock Mechanics&Rock Engineering,2013,46(4):713-729.
    [26]RANKINE W J M.On the stability of loose earth[J].Philosophical Transactions of the Royal Society of London,1857(147):9-27.
    [27]KWAN J S H,CHEUNG R W M.Suggestion on design approaches for flexible debris-resisting barriers[C]//Discussion Note DN1/2012,The Government of Hong Kong Standards and Testing Division.Hong Kong,2012.
    [28]HOLZINGER G,HüBL J.Impact forces on a debris flow breaker derived from laboratory experiments[C]//Mikos M,Gutknecht D eds.10 Kongress Interpraevent 2004,Garda,2004.
    [29]FERRERO A M,SEGALINI A,UMILI G.Experimental tests for the application of an analytical model for flexible debris flow barrier design[J].Engineering Geology,2015,185:33-42.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700