用户名: 密码: 验证码:
无机纳米粒子对木粉/高密度聚乙烯木塑复合材料热学及力学性能的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of Inorganic Nanoparticles on the Thermal and Mechanical Properties of Wood Fiber/HDPE Composites
  • 作者:祁睿格 ; 何春霞 ; 付菁菁 ; 赵丽梅 ; 姜彩昀
  • 英文作者:QI Ruige;HE Chunxia;FU Jingjing;ZHAO Limei;JIANG Caiyun;College of Engineering, Nanjing Agricultural University;Nanjing Research Institute for Agriculture Mechanization;
  • 关键词:模压成型 ; 无机纳米粒子 ; 热稳定性 ; 力学性能
  • 英文关键词:molding;;inorganic nanoparticles;;thermal stability;;mechanical properties
  • 中文刊名:SHJT
  • 英文刊名:Journal of Shanghai Jiaotong University
  • 机构:南京农业大学工学院;农业部南京农业机械化研究所;
  • 出版日期:2019-03-28
  • 出版单位:上海交通大学学报
  • 年:2019
  • 期:v.53;No.397
  • 基金:国家科技支撑计划(2011BAD20B202-2)资助项目
  • 语种:中文;
  • 页:SHJT201903018
  • 页数:7
  • CN:03
  • ISSN:31-1466/U
  • 分类号:125-131
摘要
为了探讨3种无机纳米粒子(纳米碳酸钙(NPCC)、纳米蒙脱土(NMMT)和纳米氧化铝(NAL))对木粉/高密度聚乙烯(HDPE)木塑复合材料热学性能和力学性能的影响,采用模压成型方法制备木粉/HDPE木塑复合材料,利用综合热分析仪和热膨胀系数仪分析了木塑复合材料的热学性能,并测定了其力学性能.结果表明,3种无机纳米粒子对木粉/HDPE木塑复合材料的热学性能和力学性能均有一定影响.其中:添加NPCC可使木粉/HDPE木塑复合材料的线性热膨胀系数降低38.95%,并具有较好的热稳定性,从而在受热过程中的起始热分解温度提高了2.8℃,600℃时的残重率提高了39.1%;同时,添加NPCC的木粉/HDPE木塑复合材料力学性能提高的幅度最大,其拉伸强度、弯曲强度和冲击强度分别提高了32.86%、11.05%和35.32%.
        In order to investigate the thermal and mechanical properties of the wood powder/high-density polyethylene(HDPE) composites that filled with different kinds of inorganic nanoparticles(calcium carbonate NPCC, montmorillonite NMMT and alumina NAL), the thermal properties of the composites were analyzed by simultaneous thermal analyzer and expansion coefficient meter, the mechanical properties of the composites were also tested and analyzed. The results showed that all the three kinds of inorganic nanoparticles had a significant effect on the performance of wood flour/HDPE composites. Among them, NPCC could greatly lower the linear thermal expansion coefficient of wood-plastic materials by 38.95%. The composite material also has better thermal stability that the initial pyrolysis temperature increased by 2.8 ℃ during the heating process,and the carbon residue rate increased by 39.1% at 600 ℃.The tensile strength, flexural strength and impact toughness of NPCC modified wood fiber/HDPE composites also had great improvement(the increases were 32.86%, 11.05%, 35.30%, respectively).
引文
[1] CHETANACHAN W, SOOKKHO D, SUTTHITAVIL W, et al. PVC wood: A new look in construction[J]. Journal of Vinyl and Additive Technology, 2001, 7(3): 134-137.
    [2] PIEKARSKA K, SOWINSKI P, PIORKOWSKA E, et al. Structure and properties of hybrid PLA nanocomposites with inorganic nanofillers and cellulose fibers[J]. Composites Part A: Applied Science and Manufacturing, 2016, 82: 34-41.
    [3] 王伟宏, 卢国军. 硅烷偶联剂处理玄武岩纤维增强木塑复合材料[J]. 复合材料学报, 2013, 30(S1): 315-320. WANG Weihong, LU Guojun. The silane coupling agent treatment of basalt fibers reinforced wood-plastic composite[J]. Acta Materiae Compositae Sinica, 2013, 30(S1): 315-320.
    [4] DEKA B K, MAJI T K. Study on the properties of nanocomposite based on high density polyethylene, polypropylene, polyvinyl chloride and wood[J]. Composites Part A: Applied Science and Manufacturing, 2011, 42(6): 686-693.
    [5] 张娟, 宁莉萍, 杨红军, 等. 玻璃纤维含量对竹粉/高密度聚乙烯复合材料性能的影响[J]. 复合材料学报, 2016, 33(3): 477-485. ZHANG Juan, NING Liping, YANG Hongjun, et al. Effects of glass fiber content on properties of bamboo powder/HDPE composites[J]. Acta Materiae Compositae Sinica, 2016, 33(3): 477-485.
    [6] WU Q, CHI K, WU Y, et al. Mechanical, thermal expansion, and flammability properties of co-extruded wood polymer composites with basalt fiber reinforced shells[J]. Materials & Design, 2014, 60: 334-342.
    [7] DEY T K, TRIPATHI M. Thermal properties of silicon powder filled high-density polyethylene composites[J]. Thermochimica Acta, 2010, 502(1): 35-42.
    [8] PAN M Z, MEI C T, DU J, et al. Synergistic effect of nano silicon dioxide and ammonium polyphosphate on flame retardancy of wood fiber-polyethylene composites[J]. Composites Part A: Applied Science and Manufacturing, 2014, 66: 128-134.
    [9] DEVI R R, MAJI T K. Interfacial effect of surface modified TiO2 and SiO2 nanoparticles reinforcement in the properties of wood polymer clay nanocomposites[J]. Journal of the Taiwan Institute of Chemical Engineers, 2013, 44(3): 505-514.
    [10] DEKA B K, MAJI T K. Effect of coupling agent and nanoclay on properties of HDPE, LDPE, PP, PVC blend and phargamites karka nanocomposite[J]. Composites Science and Technology, 2010, 70(12): 1755-1761.
    [11] 黄润州. 芯-表结构木塑复合材料机械性能与热膨胀性能的研究[D]. 南京: 南京林业大学, 2012. HUANG Runzhou. Mechanical and thermal expansion properties of the core-shell structure wood plastic composites[D]. Nanjing: Nanjing Forestry University, 2012.
    [12] 李丽丽, 张晓虹, 王玉龙, 等. 基于聚乙烯/蒙脱土纳米复合材料微观结构的力学性能模拟[J]. 物理学报, 2016, 65(19): 213-224. LI Lili, ZHANG Xiaohong, WANG Yulong, et al. Simulation of mechanical properties based on microstructure in polyethylene/montmorillonite nanocomposites[J]. Acta Physica Sinica, 2016, 65(19): 213-224.
    [13] WU L M, LIAO L B, Lü G H. Influence of interlayer cations on organic intercalation of montmorillonite[J]. Journal of Colloid and Interface Science, 2015, 454: 1-7.
    [14] 刘永荣. Al2O3/HDPE导热复合材料的制备与性能研究[D]. 北京: 北京化工大学, 2010. LIU Yongrong. The prepation and property of alumina fiber/HDPE thermal conductibe polymer composite[D]. Beijing: Beijing University of Chemical Technology, 2010.
    [15] ZERIOUH A, BELKBIR L. Thermal decomposition of a moroccan wood under a nitrogen atmosphere[J]. Thermochimica Acta, 1995, 258: 213-218.
    [16] DIKOBE D G, LUYT A S. Thermal and mechanical properties of PP/HDPE/wood powder and MAPP/HDPE/wood powder polymer blend composites[J]. Thermochimica Acta, 2017, 654: 40-50.
    [17] SWAIN S K, DASH S, KISKU S K, et al. Thermal and oxygen barrier properties of chitosan bionanocomposites by reinforcement of calcium carbonate nanopowder[J]. Journal of Materials Science & Technology, 2014, 30(8): 791-795.
    [18] 唐艳军, 李友明, 宋晶, 等. 纳米/微米碳酸钙的结构表征和热分解行为[J]. 物理化学学报, 2007, 23(5): 717-722. TANG Yanjun, LI Youming, SONG Jing, et al. Structural characterization and thermal decomposition behavior of microsized and nanosized CaCO3[J]. Journal of Physical Chemistry, 2007, 23(5): 717-722.
    [19] 刘继纯, 付梦月, 李晴媛, 等. 蒙脱土/聚苯乙烯复合材料的热分解成炭行为[J]. 复合材料学报, 2012, 29(6): 9-18. LIU Jichun, FU Mengyue, LI Qingyuan, et al. Pyrolytic charring behavior of montmorillonite/polystyrene composites[J]. Acta Materiae Compositae Sinica, 2012, 29(6): 9-18.
    [20] CHANG M K. Mechanical properties and thermal stability of low-density polyethylene grafted maleic anhydride/montmorillonite nanocomposites[J]. Journal of Industrial and Engineering Chemistry, 2015, 27: 96-101.
    [21] PICARD E, GAUTHIER H, GéRARD J F, et al. Influence of the intercalated cations on the surface energy of montmorillonites: Consequences for the morphology and gas barrier properties of polyethylene/montmorillonites nanocomposites[J]. Journal of Colloid and Interface Science, 2007, 307(2): 364-376.
    [22] 黄润州, 张洋. 无机填料/木粉/R-PE的复合材料热膨胀性能与弯曲性能的研究[J]. 木材加工机械, 2014, 25(6): 15-18. HUANG Runzhou, ZHANG Yang. The thermal expansion and flexural properties of wood plastic composites[J]. Wood Processing Machinery, 2014, 25(6): 15-18.
    [23] ASGARI M, ABOUELMAGD A, SUNDARARAJ U. Silane functionalization of sodium montmorillonite nanoclay and its effect on rheological and mechanical properties of HDPE/clay nanocomposites[J]. Applied Clay Science, 2017, 146: 439-448.
    [24] 王文一. 无机纳米粒子/聚合物复合材料研究[D]. 北京: 北京化工大学, 2007. WANG Wenyi. Preparation and characterization of polymer filled with nano particles[D]. Beijing: Beijing University of Chemical Technology, 2007.
    [25] 王芳, 朱旭, 王忠强, 等. 纳米CaCO3对动态硫化三元乙丙橡胶/聚丙烯复合材料的性能影响[J]. 塑料工业, 2017, 45(6): 89-92. WANG Fang, ZHU Xu, WANG Zhongqiang, et al. Effect of nano calcium carbonate on properties of dymically vulcanized EPDM/PP composites[J]. China Plastics Industry, 2017, 45(6): 89-92.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700