用户名: 密码: 验证码:
一种简化的油菜杂交F_1种子的生产方法
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:A Simplified Production Method of Hybrid F_1 Seeds in Rapeseed
  • 作者:杨光圣 ; 辛强 ; 董发明 ; 洪登峰
  • 英文作者:YANG GuangSheng;XIN Qiang;DONG FaMing;HONG DengFeng;National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University;
  • 关键词:甘蓝型油菜 ; 杂交种 ; 制种 ; 化学杀雄 ; 自交不亲和
  • 英文关键词:Brassica napus;;hybrid;;F_1 seed production;;chemical inducing male sterility;;self-incompatibility
  • 中文刊名:ZNYK
  • 英文刊名:Scientia Agricultura Sinica
  • 机构:华中农业大学作物遗传改良国家重点实验室;
  • 出版日期:2019-04-16
  • 出版单位:中国农业科学
  • 年:2019
  • 期:v.52
  • 基金:油菜杂种优势利用技术与强优势杂交种创制(2016YFD0101300);; 油菜温敏细胞质雄性不育机理与应用研究(2662017PY020)
  • 语种:中文;
  • 页:ZNYK201908004
  • 页数:7
  • CN:08
  • ISSN:11-1328/S
  • 分类号:45-51
摘要
安全有效的制种方法是油菜杂交种应用的关键。通过回交转育获得抗(耐)磺酰脲类除草剂的自交不亲和系,将其作为杂交种父本。父本因其具有自交不亲和特性,自交不结实;因其具有抗(耐)磺酰脲类除草剂特性,在用磺酰脲类除草剂进行母本化学杀雄时,不受化学杀雄剂影响。因此,可以将父本与不育系或者化学杀雄的母本材料混合播种,实现杂交种父、母本的混播混收。通过本文提出的杂交制种方法,只要选育出兼有抗(耐)磺酰脲类除草剂和自交不亲和特性的父本,即可进行杂交种的快速组配。该方法将父、母本混播混收,操作简单,节约了劳动成本,提高了杂交种制种效率。
        Safe and effective F_1 seed production method is the key to hybrid production in rapeseed. Father parent lines with tribenuron-methyl resistance(or tolerance) and self-incompatiblity can be developed by means of backcross breeding. In the F_1 hybrid seed production by using tribenuron-methyl as the male sterility induction agent, the father parent lines have no seedset by self-pollination because of their self-incompatibility, and are not affected by the chemical agent because of their tribenuron-methyl resistance(or tolerance). Therefore, the parental lines can be mixed sowing and the seeds can be mixed harvesting. Using the method we proposed, if the lines with tribenuron-methyl resistance(tolerance) and self-incompatiblity are already developed, hybrid breeding can be carried out immediately. It saves labor costs, improves seed production efficiency and increases seed purity because of the mixed sowing and mixed harvesting.
引文
[1]范成明,田建华,胡赞民,王珏,吕慧颖,葛毅强,魏珣,邓向东,张蕾颖,杨维才.油菜育种行业创新动态与发展趋势.植物遗传资源学报,2018,19(3):447-454.FAN C M,TIAN J H,HU Z M,WANG J,LüH Y,GE Y Q,WEI X,DENG X D,ZHANG L Y,YANG W C.Advances of oilseed rape breeding.Journal of Plant Genetic Resources,2018,19(3):447-454.(in Chinese)
    [2]OGURA H.Studies on the new male-sterility in Japanese radish,with special reference to the utilization of this sterility towards the practical raising of hybrid seeds.Memoirs of the Faculty of Agriculture,Kagoshima University,1968,6(2):39-78.
    [3]CHARNE D G,GRANT I,KRALING K,PATEL J D,PRUVOT J C,TULSIERAM L K.Oilseed Brassica containing an improved fertility restorer gene for ogura cytoplasmic male sterility.2002,US,US6392127.
    [4]FU T D,YANG G S,YANG X N.Studies on three line Polima cytoplasmic male sterility developed in B.napus.Plant Breeding,1990,104:115-120.
    [5]杨光圣,傅廷栋.甘蓝型油菜雄性不育-可育两用系选育成功.中国农业科学,1990(1):90.YANG G S,FU T D.Success in the breeding of male sterile and fertile lines in Brassica Napus L..Scientia Agricultura Sinica,1990(1):90.(in Chinese)
    [6]杨光圣,傅廷栋,杨小牛,马朝芝.甘蓝型油菜生态雄性不育两用系的研究:I.雄性不育两用系的遗传.作物学报,1995,21(2):129-135.YANG G S,FU T D,YANG X N,MA C Z.Studies on the ecotypical male sterile line of Brassica napus L.:I.Heritance of the ecotypical male sterile line.Acta Agronomic Sinica,1995,21(2):129-135.(in Chinese)
    [7]杨光圣,傅廷栋,马朝芝,杨小牛.甘蓝型油菜生态雄性不育两用系的研究:II.环境条件对雄性不育两用系的影响.华中农业大学学报,1997,16(5):330-334.YANG G S,FU T D,MA C Z,YANG X N.Studies on the ecotypical male sterile line of Brassica napus L.:II.The influence of environment on the ecotypical male sterility.Journal of Huazhong Agricultural University,1997,16(5):330-334.(in Chinese)
    [8]袁美,杨光圣,傅廷栋,严红艳.甘蓝型油菜生态型细胞质雄性不育两用系的研究:III.8-8112AB的温度敏感性及其遗传.作物学报,2003,29(3):330-335.YUAN M,YANG G S,FU T D,YAN H Y.Studies on the ecotypical male sterile-fertile line of Brassica napus L.:III.Sensitivity to temperature of 8-8112AB and its inheritance.Acta Agronomic Sinica,2003,29(3):330-335.(in Chinese)
    [9]LIU Z,YANG Z H,WANG X,LI K D,AN H,LIU J,YANG G S,FUT D,YI B,HONG D F.A mitochondria-targeted PPR protein restores pol cytoplasmic male sterility by reducing orf224 transcript levels in oilseed rape.Molecular Plant,2016,9(7):1082-1084.
    [10]YI B,ZENG F Q,LEI S L,CHEN Y,YAO X Q,ZHU Y,WEN J,SHEN J X,MA C Z,TU J X,FU T D.Two duplicate CYP704B1-homologous genes BnMs1 and BnMs2 are required for pollen exine formation and tapetal development in Brassica napus.The Plant Journal,2010,63(6):925-938.
    [11]陈凤祥,胡宝成,李强生,张曼琳.甘蓝型油菜细胞核不育材料9012A的发现与初步研究.北京农业大学学报,1993,19(增刊):57-61.CHEN F X,HU B C,LI Q S,ZHANG M L.Discovery and study of genic male sterility(GMS)material 9012A in Brassica napus L..Acta Agricultural University Pekinensis,1993,19(Suppl.):57-61.(in Chinese)
    [12]李树林,钱玉秀,吴志华.甘蓝型油菜细胞核雄性不育性的遗传规律探讨及其应用.上海农业学报,1985,1(2):1-12.LI S L,QIAN Y X,WU Z H.Inheritance of genic male sterility in Brassica napus and its application to commercial production.Acta Agriculturae Shanghai,1985,1(2):1-12.(in Chinese)
    [13]MARIANI C,DE BEUCKELEER M,TRUETTNER J,LEEMANS J,GOLDBERG R B.Induction of male sterility in plants by a chimaeric ribonuclease gene.Nature,1990,347(6295):737.
    [14]陈凤祥,胡宝成,李成,李强生,陈维生,张曼琳.甘蓝型油菜细胞核雄性不育性的遗传研究:I隐性核不育系9012A的遗传.作物学报,1998,24(4):431-438.CHEN F X,HU B C,LI C,LI Q S,CHEN W S,ZHANG M L.Genetic studies on GMS in Brassica napus L.:I.Inheritance of recessive GMS line 9012A.Acta Agronomic Sinica,1998,24:431-438.(in Chinese)
    [15]董发明,洪登峰,刘平武,谢彦周,何庆彪,杨光圣.甘蓝型油菜隐性细胞核雄性不育系9012AB遗传模式新释.华中农业大学学报,2010,29(3):262-267.DONG F M,HONG D F,LIU P W,XIE Y Z,HE Q B,YANG G S.Anovel genetic model for the recessive genic male sterility line 9012ABin rapeseed(Brassica napus L.).Journal of Huazhong Agricultural University,2010,29(3):262-267.(in Chinese)
    [16]DONG F M,HONG D F,XIE Y Z,WEN Y P,DONG L,LIU P W,HEQ B,YANG G S.Molecular validation of a multiple-allele recessive genic male sterility locus(BnRf)in Brassica napus L..Molecular Breeding,2012,30(2):1193-1205.
    [17]DENG Z H,LI X,WANG Z Z,JIANG Y F,WAN L L,DONG F M,CHEN F X,HONG D F,YANG G S.Map-based cloning reveals the complex organization of the BnRf locus and leads to the identification of BnRf(b),a male sterility gene,in Brassica napus.Theoretical and Applied Genetics,2016,129(1):53-64.
    [18]DUN X L,ZHOU Z F,XIA S Q,WEN J,YI B,SHEN J X,MA C Z,TU J X,FU T D.BnaC.Tic40,a plastid inner membrane translocon originating from Brassica oleracea,is essential for tapetal function and microspore development in Brassica napus.The Plant Journal,2011,68(3):532-545.
    [19]LI J,HONG D F,HE J P,MA L,WAN L L,LIU P W,YANG G S.Map-based cloning of a recessive genic male sterility locus in Brassica napus L.and development of its functional marker.Theoretical and Applied Genetics,2012,125(2):223-234.
    [20]XIA S Q,WANG Z X,ZHANG H Y,HU K N,ZHANG Z Q,QIN MM,DUN X L,YI B,WEN J,MA C Z,SHEN J X,FU T D,TU J X.Altered transcription and neofunctionalization of duplicated genes rescue the harmful effects of a chimeric gene in Brassica napus.The Plant Cell,2016,28(9):2060-2078.
    [21]ZHAO L,JING X,CHEN L,LIU Y J,SU Y N,LIU T T,GAO C B,YI B,WEN J,MA C Z,TU J X,ZOU J T,FU T D,SHEN J X.Tribenuron-Methyl induces male sterility through anther-specific inhibition of acetolactate synthase leading to autophagic cell death.Molecular Plant,2015,8(12):1710-1724.
    [22]ZHAO L,DENG L,ZHANG Q,JING X,MA M,YI B,WEN J,MAC Z,TU J X,FU T D,SHEN J X.Autophagy contributes to sulfonylurea herbicide tolerance via GCN2-independent regulation of amino acid homeostasis.Autophagy,2018,14(4):702-714.
    [23]KITASHIBA H,NASRALLAH J B.Self-incompatibility in Brassicaceae crops:Lessons for interspecific incompatibility.Breeding Science,2014,64(1):23-37.
    [24]NASRALLAH J B,NASRALLAH M E.Pollen-stigma signaling in the sporophytic self-incompatibility response.The Plant Cell,1993,5(10):1325-1335.
    [25]马朝芝,傅廷栋,杨光圣,涂金星,杨小牛,但芳.甘蓝型油菜双低自交不亲和系的选育.华中农业大学学报,1998,17(3):211-213.MA C Z,FU T D,YANG G S,TU J X,YANG X N,DAN F.Breeding for self-incompatibility lines with double zero on Brassica napus L..Journal of Huazhong Agricultural University,1998,17(3):211-213.(in Chinese)
    [26]ZHAI W,ZHANG J F,YANG Y,MA C Z,LIU Z Q,GAO C B,ZHOU G L,TU J X,SHEN J X,FU T D.Gene expression and genetic analysis reveal diverse causes of recessive self-compatibility in Brassica napus L..BMC Genomics,2014,15(1):1037.
    [27]GAO C B,MA C Z,ZHANG X G,LI F P,ZHANG J F,ZHAI W,WANG Y Y,TU J X,SHEN J X,FU T D.The genetic characterization of self-incompatibility in a Brassica napus line with promising breeding potential.Molecular Breeding,2013,31(2):485-493.
    [28]GAO C B,ZHOU G L,MA C Z,ZHAI W,ZHANG T,LIU Z Q,YANG Y,WU M,YUE Y,DUAN Z Q,LI Y Y,LI B,LI J J,SHEN JX,TU J X,FU T D.Helitron-like transposons contributed to the mating system transition from out-crossing to self-fertilizing in polyploid Brassica napus L..Scientific Reports,2016,6(5):337-355.
    [29]TANG J Y,ZHANG J F,MA C Z,TANG W,GAO C B,LI F P,WANG X,LIU Y,FU T D.CAPS and SCAR markers linked to maintenance of self-incompatibility developed from SP11 in Brassica napus L..Molecular Breeding,2009,24(3):245-254.
    [30]ZHANG X G,MA C Z,FU T D,LI Y Y,WANG T H,CHEN Q,TU JX,SHEN J X.Development of SCAR markers linked to self-incompatibility in Brassica napus L..Molecular Breeding,2007,21(3):305-315.
    [31]ZHANG X G,MA C Z,TANG J Y,TANG W,TU J X,SHEN J X,FUT D.Distribution of S haplotypes and its relationship with restorer-maintainers of self-incompatibility in cultivated Brassica napus.Theoretical and Applied Genetics,2008,117(2):171-179.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700