用户名: 密码: 验证码:
固相浓度对深海采矿矿浆泵空化性能影响规律
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of Solid-phase Concentration on Cavitation Performance of Deep-sea Mining Pump
  • 作者:徐海良 ; 徐聪 ; 曾义聪 ; 吴波
  • 英文作者:XU Hailiang;XU Cong;ZENG Yicong;WU Bo;School of Mechanical and Electrical Engineering, Central South University;State Key Laboratory of High Performance Complex Manufacturing;
  • 关键词:深海采矿矿浆泵 ; 空化特性 ; 固相浓度 ; 理论分析 ; 数值模拟
  • 英文关键词:deep sea mining pump;;cavitation;;solid-phase concentration;;theoretical analysis;;numerical simulation
  • 中文刊名:JXXB
  • 英文刊名:Journal of Mechanical Engineering
  • 机构:中南大学机电工程学院;中南大学高性能复杂制造国家重点实验室;
  • 出版日期:2018-12-26 14:06
  • 出版单位:机械工程学报
  • 年:2019
  • 期:v.55
  • 基金:国家自然科学基金资助项目(51775561);; 湖南省自然科学基金资助项目;; 深海采矿阀控式清水泵水力提升设备工作机理及设计方法(2018JJ2522)
  • 语种:中文;
  • 页:JXXB201908027
  • 页数:7
  • CN:08
  • ISSN:11-2187/TH
  • 分类号:215-221
摘要
为分析固相浓度对深海采矿矿浆泵空化特性的影响,通过空化核子理论、质能方程建立气相和液相、固相和液相之间的联系,探求气固两相之间的理论关系,进行固相参数对深海采矿矿浆泵空化性能影响分析,并采用mixture多相流模型,RNG k-ε湍流模型,Schnerr and Sauer空化模型,在fluent软件中对矿浆泵进行稳态空化仿真。比较不同颗粒浓度对矿浆泵流场压力分布、气相分布及工作性能的影响,为矿浆泵空化特性提供依据。研究结果表明:空化发生时的临界气泡半径与固相浓度及其流量可通过液体压强建立联系,固相颗粒浓度越大、固相流量越大,空化将提前发生,抗空化性能将下降;随着固相浓度的增加,在矿浆泵首级叶轮叶片背面入口处压力降幅增大,气相体积分数增大,泵扬程减小,汽蚀余量减小。
        In order to analyze the influence of solid concentration on the cavitation characteristics of deep-sea mining pump, the relationship between gas phase and liquid phase, solid phase and liquid phase are established through the theory of cavitation nucleus and the energy equation. And the effect of solid-phase parameters on the cavitation performance of deep-sea mining pump is studied.The cavitation steady simulation of slurry pump is carried out by fluent software using the mixture multiphase flow model, RNG k-εturbulence model and Singhal fully cavitated model. The influence of different particle concentration on the pressure distribution, gas distribution and working performance of the slurry pump are given, which provides the theoretical basis for the cavitation characteristics of the slurry pump. The results show that the critical bubble radius and the solid concentration and the flow rate can be established by the liquid pressure when the cavitation occurs. The larger the solid phase particle concentration is, the larger the solid phase flow will occur. The anti-cavitation performance of pump will decrease. With the increase of solid concentration, the pressure decreases at the inlet of the impeller blade of the primary pump, as well as the volume fraction of the gas and the anti-cavitation performance.
引文
[1]董冰洁.我国海洋多金属矿产资源研究现状及战略性开发前景[J].世界有色金属,2016,12(1):168-169.DONG Bingjie.Research status and strategic development prospect of marine polymetallic mineral resources in China[J].World Nonferrous Metals,2016,12(1):168-169.
    [2]刘少军,刘畅,戴瑜.深海采矿装备研发的现状与进展[J].机械工程学报,2014,50(2):8-18.LIU Shaojun,LIU Chang,DAI Yu.Status and progress on researches and developments of deep ocean mining equipments[J].Journal of Mechanical Engineering,2014,50(2):8-18
    [3]YOON C H,PARK Y C,LEE D K,et al.Hydraulic pumping test system of kigam for deep-sea manganese nodules[C]//Proceedings of 33rd Underwater Mining Institute,2003:131-135.
    [4]H DING,F C VISSER,Y JIANG,et al.Demonstration and validation of a 3D CFD simulation tool predicting pump performance and cavitation for industrial applications[J].Journal of Fluids Engineering,2011,133(1):011101.
    [5]杨放琼,陈奇,曾义聪,等.深海采矿矿浆泵的设计方法研究[J].合肥工业大学学报,2014,12(37):1413-1418.YANG Fangqiong,CHEN Qi,ZENG Yicong,et al.Research on design method of slurry pump for deep-sea mining[J].Journal of HeFei University of Technology.2014,12(37):1413-1418.
    [6]陈奇.深海采矿矿浆泵内固液两相流数值模拟及性能预测研究[D].长沙:中南大学,2014.CHEN Qi.Numerical simulation on solid-liquid two-phase flow and performance prediction of slurry pump for deep-sea mining[D].Changsha:Central South University,2014.
    [7]姬凯.轴流泵叶轮内空化流动实验研究与数值计算[D].镇江:江苏大学,2010.JI Kai.Experimental study and numerical calculation of cavitating flow in impeller of axial flow pump[D].Zhenjiang:Jiangsu University,2010.
    [8]李文广.全空化模型预测离心泵汽蚀性能的准确度[J].水泵技术,2013(5):1-7.LI Wenguang.Prediction of cavitation performance of centrifugal pump by full cavitation model[J].Water Pump Technology,2013(5):1-7.
    [9]赵宇,王国玉,吴钦,等.基于计算流体力学的串列轴流泵空化性能分析[J].机械工程学报,2014,50(6):171-176.ZHAO Yu,WANG Guoyu,WU Qin,et al.Analysis of cavitation performances of an axial flow tandem pump based on computational fluid dynamics[J].Journal of Mechanical Engineering,2014,50(6):171-176.
    [10]柯乃普R T,戴利J W,哈密脱F G.空化与空蚀[M].北京:水利出版社,1981.KNAPP R T,DAILY J W,HAMMITT F G.Cavitation[M].Beijing:Water Conservancy Press,1981.
    [11]LAUNDER B E,SPALDING D B.The numerical computation of turbulent flows[J].Computer methods in applied Mechanics and Engineering,1974,3(2):269-289.
    [12]COLOMBO M,FAIRWEATHER M.Multiphase turbulence in bubbly flows:RANS simulations[J].International Journal of Multiphase Flow,2015,77:222-243.
    [13]YIN Fanglong,NIE Songlin,XIAO Shuhan,et al.Numerical and experimental study of cavitation performance in sea water hydraulic axial piston pump[J].Proceedings of the Institution of Mechanical Engineers,2016,230(8):716-735.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700