用户名: 密码: 验证码:
整体式桥台-H形钢桩-土相互作用低周往复拟静力试验
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Interaction of Integral Abutment-H-shaped Steel Pile-soil Under Reciprocating Low-cycle Pseudo-static Test
  • 作者:黄福云 ; 林友炜 ; 程俊峰 ; 杨芳芳
  • 英文作者:HUANG Fu-yun;LIN You-wei;CHENG Jun-feng;YANG Fang-fang;School of Civil Engineering, Fuzhou University;Fujian Provincial Key Laboratory on Multi-disasters Prevention and Mitigation in Civil Engineering,Fuzhou University;
  • 关键词:桥梁工程 ; H形钢桩 ; 试验研究 ; 桥台-桩-土相互作用 ; 拟静力 ; 温度作用 ; 残余变形累积
  • 英文关键词:bridge engineering;;H-shaped steel pile;;experimental research;;interaction of abutment-pile-soil;;pseudo-static;;temperature effect;;residual accumulative deformation
  • 中文刊名:ZGGL
  • 英文刊名:China Journal of Highway and Transport
  • 机构:福州大学土木工程学院;福州大学福建省土木工程多灾害防治重点实验室;
  • 出版日期:2019-05-15
  • 出版单位:中国公路学报
  • 年:2019
  • 期:v.32;No.189
  • 基金:国家自然科学基金项目(51578161)
  • 语种:中文;
  • 页:ZGGL201905011
  • 页数:15
  • CN:05
  • ISSN:61-1313/U
  • 分类号:104-118
摘要
整体桥具有使用寿命长、施工方便、造价及养护费用低等特点,目前在国内外得到了广泛应用与推广。然而,整体桥在季节性温度荷载作用下会发生往复位移,并产生桥台-桩基-土相互作用。为此,以福建上坂大桥为背景,设计制作桥台-桩基结构试验模型,开展桥台-H形钢桩基-土相互作用低周往复荷载拟静力试验研究,主要研究桥台、桩基的滞回性能与变形规律以及桥台-桩基-土三者相互作用的机理。结果表明:桥台与桩基的等效黏滞阻尼比均较大,其值大于0.15,即整体桥具有良好的抗震性能和耗能能力;整体桥在温度作用下桩基处于弹性状态,但会发生残余变形,同时在台背与桩顶的一定宽度和深度范围内存在土体脱空现象,实际工程中产生桥头跳车、搭板沉降的原因不仅与台后土体的特性相关,还与桥台结构的受力机理相关;仅测量和分析上部未入土结构的变形并不能准确反映整体结构的变形规律;试验循环加载全过程桥台-桩基-土相互作用会产生累积变形,其中桩基的累积变形要大于桥台的累积变形,且其累积变形远大于任意单步荷载作用下产生的变形;目前对于现有桥台-桩基变形的理论并未考虑累积变形的影响,该研究结果可为有关规范的制订提供参考。
        The integral abutment jointless bridge(IAJB) has a long service life, convenient construction, and less building and maintenance costs. For these advantages, the IAJB has been widely used in foreign and domestic practical engineering. However, reciprocating displacement of the IAJB occurs under seasonal temperature loads, and the abutment-pile-soil interaction is produced. Thus, an abutment-pile structural test model was designed and manufactured based on Fujian Shangban Bridge. Using the model, the reciprocating low-cycle pseudo-static test was carried out for the integral abutment-H-shaped steel pile-soil interaction. The hysteretic behavior, lateral deformation law, and interactive mechanism of integral abutment-pile-soil were studied. The results indicate that the equivalent damping ratio of abutment and pile is more than 0.15, suggesting that the IAJB has a favorable seismic performance. The pile of an IAJB is in the elastic stage under the local temperature effect; however, it carries a residual deformation. The cavitation of soil for a range of widths and depths of the pile head/abutment bottom, and void phenomenon of backfill at abutment can be observed. The cause of bumps at the bridge ends and the settlement under approach slab not only relate to the backfill properties of abutment but also to the behavioral mechanism of the abutment structure and soil. In addition, when simply measured and analyzed, the deformation over the surface of the pile cannot accurately demonstrate the distribution of lateral deformation. The accumulative deformation of the abutment-pile-soil interaction was examined, and it is determined that the accumulative deformation on the pile is larger than that of the abutment. Moreover, the overall accumulative deformation is larger than that produced by the individual load steps. Presently, the existing theory for calculating the lateral deformation of abutment-pile foundation does not take into account the impact of accumulative deformation. Thus, this study may serve as a reference for the relevant construction codes.
引文
[1] 陈宝春,庄一舟,BRUNO B.无伸缩缝桥梁[M].北京:人民交通出版社,2013.CHEN B C,ZHUANG Y Z,BRUNO B.Jointless Bridges [M].Beijing:China Communications Press,2013.
    [2] 彭大文,林志平,洪锦祥.无伸缩缝桥梁的研究与实践[J].公路,2006(8):53-56.PENG Da-wen,LIN Zhi-ping,HONG Jin-xiang.Research and Practice for Jointless Bridges [J].Highway,2006 (8):53-56.
    [3] CLAYTON C R I,XU M,BLOODWORTH A G.A Laboratory Study of the Development of Earth Pressure Behind Integral Bridge Abutments [J].Géotechnique,2006,56 (56):561-571.
    [4] XU M,BLOODWORTH A G,CLAYTON C R I.Behavior of a Stiff Clay Behind Embedded Integral Abutments [J].Journal of Geotechnical & Geoenvironmental Engineering,2007,133 (6):721-730.
    [5] XU M,CLAYTON C R I,BLOODWORTH A G.The Earth Pressure Behind Full-height Frame Integral Abutments Support [J].Canadian Geotechnical Journal,2007,44 (3):284-298.
    [6] BRE?A S F,BONCZAR C H,CIVJAN S A,et al.Evaluation of Seasonal and Yearly Behavior of an Integral Abutment Bridge [J].Journal of Bridge Engineering,2007,12 (3):296-305.
    [7] BARKER R M,DUNCAN J M ,ROJIANI K B,et al.Manuals for the Design of Bridge Foundation [M].Washington DC:Transportation Research Board,1991.
    [8] NOWAK A S,GROUNI H N.Calibration of the Ontario Highway Bridge Design Code:1991 Edition [J].Canadian Journal of Civil Engineering,1994,21 (1):25-35.
    [9] DICLELI M.Simplified Model for Computer-aided Analysis of Integral Bridges [J].Journal of Bridge Engineering,2000,5 (3):240-248.
    [10] CHEN Y.Important Considerations,Guidelines,and Practical Details of Integral Bridges[J].Journal of Engineering and Technology,1997,14(1):16-19.
    [11] BURKE J R,MARTIN P.The Design of Integral Concrete Bridges [J].Concrete International,1993,15:37-42.
    [12] ENGLAND G L,TSANG C M,BUSH D.Integral Bridges:A Fundamental Approach to the Time Temperature Loading Problem [M].London:Thomas Telford,2000.
    [13] ALIZADEH M H,KHALIM R A R,CHIK Z,et al.Investigation of Abutment Displacement of a Full Height Integral Bridges in Dense Granule Backfill [J].American Journal of Engineering and Applied Sciences,2010,3 (4):749-756.
    [14] BURKE J R,MARTIN P.Integral and Semi-integral Bridges [M].Oxford:John Wiley & Sons,2009.
    [15] KIM W,LAMAN J A.Seven-year Field Monitoring of Four Integral Abutment Bridges [J].Journal of Performance of Constructed Facilities,2012,26 (1):54-64.
    [16] FANG H Y,CHANEY R C.Foundation Engineering Handbook [M].2nd ed.New York:Van Nostrand Reinhold,1991.
    [17] 洪锦祥,彭大文,汪新惠.整体式桥台桥梁的台后被动土压力研究[J].福州大学学报:自然科学版,2003,31(6):721-725.HONG Jin-xiang,PENG Da-wen,WANG Xin-hui.Passive Earth Pressure Behind Abutment of Integral Abutment Bridges [J].Journal of Fuzhou University:Natural Science Edition,2003,31 (6):721-725.
    [18] 彭大文,洪锦祥.整体式桥台桥梁的简化计算模型研究[J].公路,2009(2):34-39.PENG Da-wen,HONG Jin-xiang.Research on Simplified Calculating Model of Integral Abutment Bridges [J].Highway,2009 (2):34-39.
    [19] 于天来,周田,姜立东,等.升温作用下整体桥台台后土压力计算方法的探讨[J].桥梁建设,2010(1):29-35.YU Tian-lai,ZHOU Tian,JIANG Li-dong,et al.Study of Calculating Methods for Earth Pressure Behind Abutment of Integral Abutment Bridge Under Action of Rising Temperatures [J].Bridge Construction,2010 (1):29-35.
    [20] ENGLAND G L,DUNSTAN T,TSANG C M,et al.Ratcheting Flow of Granular Materials [C] // ASCE.Proceedings of 2014 ASCE Conference on ASCE Static and Dynamic Properties of Gravelly Soils.Reston:ASCE,2014,1-10.
    [21] 彭大文,陈晓冬,袁燕.整体式桥台桥梁台后土压力的季节性变化研究[J].岩土工程学报,2003,25(2):135-139.PENG Da-wen,CHEN Xiao-dong,YUAN Yan.Study on Seasonal Fluctuation of Earth Pressure Behind the Abutment [J].Chinese Journal of Geotechnical Engineering,2003,25 (2):135-139.
    [22] GOEL R K.Earthquake Characteristics of Bridges with Integral Abutments [J].Journal of Structure Engineering,1997,123 (11):1435-1443.
    [23] AHMAD M.Seismic Performance of Steel Plate Girder Bridges with Integral Abutments [R].Nevada:Department of Civil and Environmental Engineering,2011.
    [24] GIRTON D D,HAWKINSON T R,GREIMANN L F.Validation of Design Recommendations for Integral Abutment Piles [J].Journal of Structural Engineering,1989,117 (7):2117-2134.
    [25] 刘昌杞.桩与承台(基础)板连接的设计与施工[J].建筑技术,1993,20(3):164-168.LIU Chang-qi.Design and Construction of Pile and Platform (Foundation) Plate Connection [J].Architecture Technology,1993,20 (3):164-168.
    [26] KULHAWY F H,MAYNE P W.Manual on Estimating Soil Properties for Foundation Design [R].Ithaca:Cornell University,1990.
    [27] 赵明华.土力学与基础工程[M].武汉:武汉理工大学出版社,2014.ZHAO Ming-hua.Soil Mechanics and Foundation Engineering [M].Wuhan:Wuhan University of Technology Press,2014.
    [28] 庄一舟,黄福云,钱海敏,等.PHC管桩-土相互作用受力性能拟静力试验[J].中国公路学报.2017,30(4):42-51.ZHUANG Yi-zhou,HUANG Fu-yun,QIAN Hai-min,et al.Pseudo-static Test Research on Mechanic Behavior of PHC Piles with Soil-pile Interaction [J].China Journal of Highway and Transport,2017,30 (4):42-51.
    [29] 袁辉辉,唐瑜,吴庆雄.薄壁带肋方型截面钢桥墩抗震性能的拟静力试验研究[J].福州大学学报:自然科学版.2016,44(4):459-464.YUAN Hui-hui,TANG Yu,WU Qing-xiong.Quasistatic Test Research on Seismic Performance of Steel Bridge Piers with Thin-wall Ribbed Square Cross Section [J].Journal of Fuzhou University:Natural Science Edition.2016,44 (4):459-464.
    [30] 陈晓冬.季节性温度荷载下整体式桥台桥梁的台后土压力研究[D].福州:福州大学,2002.CHEN Xiao-dong.Study on Earth Pressure Behind Abutment Under Seasonal Temperature [D].Fuzhou:Fuzhou University,2002.
    [31] 郭鹏鑫.桥梁H形钢桩抗震性能研究[D].长沙:湖南大学,2015.GUO Peng-xin.Seismic Behavior of Steel H-piles in Bridges [D].Changsha:Hunan University,2015.
    [32] 黄福云,庄一舟,付毳,等.无伸缩缝梁桥抗震性能与设计计算方法研究[J].地震工程与工程振动,2015,35(5):15-22.HUANG Fu-yun,ZHUANG Yi-zhou,FU Cui,et al.Review on the Seismic Performance and Simplified Design Method of Jointless Bridge [J].Earthquake Engineering and Engineering Dynamics,2015,35 (5):15-22.
    [33] 史佩栋.桩基工程手册[M].北京:人民交通出版社,2015.SHI Pei-dong.Pile and Pile Foundation Hand-book [M].Beijing:China Communications Press,2015.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700