用户名: 密码: 验证码:
高压流动体系CO_2水合物生长动力学特性
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Growth Kinetics of CO_2 Hydrate in High Pressure Flow System
  • 作者:左江伟 ; 岳铭亮 ; 吕晓方 ; 周诗岽 ; 赵会军 ; 王树立
  • 英文作者:ZUO Jiang-wei;YUE Ming-liang;Lü Xiao-fang;ZHOU Shi-dong;ZHAO Hui-jun;WANG Shu-li;Jiangsu Key Laboratory of Oil-Gas Storage and Transportation Technology,School of Petroleum Engineering,Changzhou University;Zhejiang Zheneng Natural Gas Operation Co,Ltd;
  • 关键词:CO_2水合物 ; 初始压力 ; 载液量 ; 流量 ; 诱导期 ; 耗气量
  • 英文关键词:CO_2 hydrate;;initial pressure;;liquid loading;;flow rate;;induction period;;gas consumption
  • 中文刊名:KXJS
  • 英文刊名:Science Technology and Engineering
  • 机构:常州大学石油工程学院油气储运技术省重点实验室;浙江浙能天然气运行有限公司;
  • 出版日期:2019-07-18
  • 出版单位:科学技术与工程
  • 年:2019
  • 期:v.19;No.489
  • 基金:国家自然科学基金(51804046);; 中国石油科技创新基金研究项目(2018D-5007-0602);; 江苏省教育厅面上研究项目(18KJB440001)资助
  • 语种:中文;
  • 页:KXJS201920027
  • 页数:9
  • CN:20
  • ISSN:11-4688/T
  • 分类号:192-200
摘要
为探明CO_2水合物在流动体系的生长过程及特性,借助高压循环可视环路装置,开展了一系列不同初始压力、载液量、流量下,CO_2水合物生成及浆液流动实验,得到了不同因素对水合物诱导时间及耗气量的影响规律。实验结果表明:在水合物大量生成阶段,管内温度突升、压力骤降,体系流量迅速下降直至稳定、压差呈先上升后下降的趋势; CO_2水合物诱导期随初始压力的增大而缩短,耗气量则随初始压力的升高而增加。在9 L-30 L/min的实验体系下,初始压力从2. 5 MPa增加到2. 8 MPa,诱导期缩短13. 2%,而初始压力为3 MPa时,诱导期仅为17. 4 min,缩短了36. 03%;诱导时间随载液量增加呈现先减小后增大的趋势,耗气量随着管路载液量的增加而降低;流量与诱导时间、耗气量呈负相关关系,随着体系流量增大,诱导时间缩短、耗气量减小。在2. 8 MPa-7 L的实验体系下,质量流量从20 kg/min增加到28 kg/min,诱导期从25 min缩短到18. 4 min,缩短26. 4%,而流量为20 kg/min时的耗气量是28 kg/min的2. 7倍。研究结论可在一定程度上为CO_2水合物的工业应用提供参考。
        In order to find out the growth process and characteristics of CO_2 hydrate in the flow system,a series of different initial pressures,liquid loading,flow rates of carbon dioxide hydrate formation and slurry flow experiments were carried out by means of a high pressure circulation visual loop device. The effects of initial pressure,liquid loading,system flow rate on hydrate induction time and gas consumption were obtained. The experimental results show that,during the large amount of hydrate formation,the temperature inside the tube rises sharply and the pressure drops sharply. The system flow rate drops rapidly until the pressure is constant. The trend of rising first and then decreasing. CO_2 hydrate induction period increases with the initial pressure. Shortening,the gas consumption increases with the increase of the initial pressure,and the high initial pressure can significantly reduce the CO_2 hydrate induction time. Under the experimental conditions of 9 L and 30 L/min,the initial pressure increased from 2. 5 MPa to 2. 8 MPa,and the induction time was shortened by13. 2%. When the initial pressure was 3 MPa,the induction time was only 17. 4 min,which was shortened by 36. 03%. The induction time decreases first and then increases with the increase of the liquid loading of the pipeline,and the gas consumption decreases with the increase of the liquid loading. The experimental flow has a negative correlation with the induction time and gas consumption,with the increase of the flow rate,the induction time was shortened and the gas consumption was reduced. Under the experimental conditions of 2. 8 MPa and 7 L,the flow rate increased from 20 kg/min to 28 kg/min,the induction period was shortened from 25 min to 18. 4 min,shortened by 26. 4%,and the gas consumption at flow rate of 20 kg/min is 2. 7 times of 28 kg/min. The conclusions of this study can provide a reference for the industrial application of carbon dioxide hydrate to some extent.
引文
1 Sohn Y H,Kim J,Shin K,et al.Hydrate plug formation risk with varying water cut and inhibitor concentrations[J].Chemical Engineering Science,2015,126:711-718
    2 Koh C A,Sum A K,Sloan E D.State of the art:Natural gas hydrates as a natural resource[J].Journal of Natural Gas Science&Engineering,2012,8:132-138
    3周诗岽,张锦,赵永利,等.纳米石墨颗粒与SDS复配对CO2水合物生成诱导时间的影响[J].科学技术与工程,2016(1):58-62Zhou Shidong,Zhang Jin,Zhao Yongli,et al.Effect of graphite nanoparticles and SDS on induction time of gas hydrate formation[J].Science Technology and Engineerin,2016(1):58-62
    4王树立,武玉宪,周诗岽,等.一种水合物分离器:CN201921551U[P].2011.08.10Wang Shuli,Wu Yuxian,Zhou Shidong,et al.A kind of hydrate separator:CN201921551U[P].2011.08.10
    5史博会,宋素合,易成高,等.水合物流动环路实验研究进展[J].化工进展,2018,37(4):1347-1363Shi Bohui,Song Suhe,Yi Chengao,et al.Experimental research progress on hydrate flow loops[J].Chemical Industy and Engineering Progress,2018,37(4):1347-1363
    6吕晓方,王莹,李文庆,等.天然气油基水合物浆液流动实验[J].天然气工业,2014,34(11):108-114LüXiaofang,Wang Ying,Li Wenqing,et al.An experimental study of the hydrate blockage in the oil-dominated flow system[J].Natural Gas Industy,2014,34(11):108-114
    7 Zhou S,Yan H,Su D,et al.Investigation on the kinetics of carbon dioxide hydrate formation using flow loop testing[J].Journal of Natural Gas Science and Engineering,2018,49:385-392
    8 Ding L,Shi B H,LüX F,et al.Investigation of natural gas hydrate slurry flow properties and flow patterns using a high pressure flow loop[J].Chemical Engineering Science,2016,146:199-206
    9唐翠萍,赵翔湧,何勇,等.管道内二氧化碳水合物的形成和流动特性研究[J].天然气化工(C1化学与化工),2015(4):37-40Tang Cuiping,Zhao Xiangyong,He Yong,et al.Study on CO2gas hydrate formation andflow characteristics in pipe[J].Natural Gas Chemical Industy,2015(4):37-40
    10李文庆.多相体系水合物浆液管流规律实验研究[D].北京:中国石油大学(北京),2012Li Wenqing.Eeperimental study on multiphase flow mechanism of hydrate slurry in pipe[D].Beijing:China University of PetroleumBeijing,2012
    11 Melchuna A,Cameirao A,Herri J M,et al.Topological modeling of methane hydrate crystallization from low to high water cut emulsion systems[J].Fluid Phase Equilibria,2016,413(2):158-169
    12李文志,陈光进,孙长宇,等.含防聚剂水合物浆液在循环管路中的性能[J].石油化工,2012,41(3):313-318Li Wenzhi,Chen Guangjin,Sun Changyu,et al.Properties of gas hydrate slurry with anti-agglomerating agent in cycle flow system[J].Petrochemical Technology,2012,41(3):313-318
    13 Oignet J,Delahaye A,Torre J P,et al.Rheological study of CO2hydrate slurry in the presence of sodium dodecyl sulfate in a secondary refrigeration loop[J].Chemical Engineering Science,2017,158:294-303
    14胡亚飞,蔡晶,徐纯刚,等.气体水合物相变热研究进展[J].化工进展,2016,35(7):2021-2032Hu Yafei,Cai Jing,Xu Chungang,et al.Research progress on phase change heat of gas hydrates[J].Chemical Industy and Engineering Progress,2016,35(7):2021-2032
    15刘妮,张亚楠,柳秀婷,等.纳米流体中CO2水合物生成特性实验研究[J].制冷学报,2015(2):41-45Liu Ni,Zhang Yanan,Liu Xiuting,et al.Experimental study on characteristics of CO2hydrate formation in nanofluids[J].Journal of Refrigeration,2015(2):41-45
    16周诗岽,陈小康,边慧,等.CO2水合物在管道中的生成及堵塞特性[J].化工进展,2018,37(11):4250-4256Zhou Shidong,Chen Xiaokang,Bian Hui,et al.CO2hydrate formation in pipeline and its plugging characteristics[J].Chemical Industy and Engineering Progress,2018,37(11):4250-4256
    17吕晓方.高压多相体系水合物浆液生成/分解及流动规律研究[D].北京:中国石油大学(北京),2015LüXiaofang.Study on the hydrate slurry formation/decomposition and multiphase flow in high-pressure multiphase system[D].Beijing:China University of Petroleum-Beijing,2015
    18王世海.驱动力影响下瓦斯水合分离试验研究[D].哈尔滨:黑龙江科技大学,2016Wang Shihai.Eeperimental study on the separation of gas hydrate under the influence of driving forces[D].Harbin:Heilongjiang Institute of Science and Technology,2016
    19 LüX F,Shi B H,Wang Y,et al.Experimental study on hydrate induction time of gas-saturated water-in-oil emulsion using a highpressure flow loop[J].Oil&Gas Science&Technology,2014,70(6):253-268
    20 Talaghat M.Effect of various types of equations of state for prediction of simple gas hydrate formation with or without the presence of kinetic inhibitors in a flow mini-loop apparatus[J].Fluid Phase Equilibria,2009,286(1):33-42
    21 Duan Z H,Sun R.An improved model calculating CO2solubility in pure water and aqueous Na Cl solutions from 273 to 533 K and from 0to 2 000 bar[J].Chemical Geology,2003,193(3):257-271
    22 Najafi M J,Mohebbi V.Solubility measurement of carbon dioxide in water in the presence of gas hydrate[J].Journal of Natural Gas Science and Engineering,2014,21:738-745
    23史博会,雍宇,柳杨,等.含蜡和防聚剂体系天然气水合物浆液生成及流动特性[J].化工进展,2018,37(6):2182-2191Shi Bohui,Yong Yu,Liu Yang,et al.Characteristics of natural gas hydrate slurry formation and flow in systems with wax and anti-agglomerates[J].Chemical Industy and Engineering Progress,2018,37(6):2182-2191
    24 Shi B H,Chai S,Wang L Y,et al.Viscosity investigation of natural gas hydrate slurries with anti-agglomerants additives[J].Fuel,2016,185:323-338
    25宋光春,李玉星,王武昌,等.油气混输管道中天然气水合物的形成和堵塞过程研究[J].石油与天然气化工,2017,46(2):38-43Song Guangchun,Li Yuxing,Wang Wuchang,et al.Research of natural gas hydrate formation and plugging in mixed transmission pipelines of oil and gas[J].Chemical Engineering of Oil and Gas,2017,46(2):38-43
    26 Shi B H,Ding L,Liu Y,et al.Hydrate slurry flow property in W/O emulsion systems[J].RSC Advances,2018,8:11436-11445
    27 Shi B H,Song S F,LüX F,et al.Investigation on natural gas hydrate dissociation from a slurry to a water-in-oil emulsion in a highpressure flow loop[J].Fuel,2018,233:743-758
    28 Maeda N,Wells D,Hartley P G,et al.Statistical analysis of supercooling in fuel gas hydrate systems[J].Energy&Fuels,2012,26(3):1820-1827
    29 Song G C,Li Y X,Wang W C,et al.Investigation of hydrate plugging in natural gas+diesel oil+water systems using a high-pressure flow loop[J].Chemical Engineering Science,2017,158:480-489
    30 Vijayamohan P,Majid A,Chaudhari P,et al.Understanding gas hydrate growth in partially dispersed and water continuous systems from flow loop tests[C]//Offshore Technology Conference.Huston Texas,USA:Offshore Technology Conference,2015:4-7

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700