用户名: 密码: 验证码:
光纤结构光场产生及应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Generation and Application of Fiber-Based Structured Light Field
  • 作者:张文定 ; 李鑫 ; 白家浩 ; 张录 ; 梅霆 ; 赵建林
  • 英文作者:Zhang Wending;Li Xin;Bai Jiahao;Zhang Lu;Mei Ting;Zhao Jianlin;Shaanxi Key Laboratory of Optical Information Technology,School of Science,Northwestern Polytechnical University;MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions,School of Science,Northwestern Polytechnical University;
  • 关键词:物理光学 ; 光场调控 ; 矢量光场 ; 涡旋光场 ; 模式耦合
  • 英文关键词:physical optics;;light field modulation;;vector field;;vortex field;;mode coupling
  • 中文刊名:GXXB
  • 英文刊名:Acta Optica Sinica
  • 机构:西北工业大学理学院陕西省光信息技术重点实验室;西北工业大学理学院超常条件材料物理与化学教育部重点实验室;
  • 出版日期:2018-10-20 12:02
  • 出版单位:光学学报
  • 年:2019
  • 期:v.39;No.442
  • 基金:国家重点基础研究发展计划(2017YFA0303800);; 国家自然科学基金(61675169,11634010,61675171);; 中央高校基本科研业务费专项资金(3102017ZY021);; 陕西省自然科学基金(2018JM6036)
  • 语种:中文;
  • 页:GXXB201901004
  • 页数:19
  • CN:01
  • ISSN:31-1252/O4
  • 分类号:51-69
摘要
光纤结构光场作为光场调控的一个重要分支,逐渐引起了研究者们的广泛关注。首先基于光纤矢量模式理论,讨论了光纤中具有空间偏振/相位奇异特性的结构光场的产生机理;然后,介绍了光纤结构光场的产生方法,如长周期光纤光栅耦合法、光纤端面微结构法和轨道角动量转换法等;最后,介绍了光纤结构光场在超分辨成像、涡旋光通信、等离子针尖纳米聚焦和非线性频率转换等方面的一些典型应用。
        Fiber-based structured light fields, as an important branch of light field modulation, have gradually attracted much attention of researchers. First, based on the fiber vector mode theory, the generation mechanism of fiber-based structured light fields with spatial polarization/phase singularity is discussed. Then, the generation methods of fiber-based structured light fields, such as long-period fiber grating coupling method, fiber end face microstructure method, and orbital angular momentum conversion method, are introduced. Finally, some typical applications of fiber-based structured light fields in super-resolution imaging, vortex light communication,plasmonic tip nanofocusing, nonlinear frequency conversion and so on are presented.
引文
[1] Dorn R,Quabis S, Leuchs G. Sharper focus for a radially polarized light beam[J]. Physical Review Letters, 2003, 91(23):233901.
    [2] Lavery M P J, Speirits F C, Barnett S M, et al.Detection of a spinning object using light's orbital angular momentum[J]. Science, 2013. 341(6145):537-540.
    [3] Vitullo D L P, Leary C C, Gregg P, et al.Observation of interaction of spin and intrinsic orbital angular momentum of light[J]. Physical Review Letters, 2017, 118(8):083601.
    [4] Wiesbauer M, Wollhofen R, Vasic B, et al. Nanoanchors with single protein capacity produced with STED lithography[J]. Nano Letters, 2013,13(11):5672-5678.
    [5] Padgett M, Bowman R. Tweezers with a twist[J].Nature Photonics, 2011, 5(6):343-348.
    [6] Patchkovskii S, Spanner M. Nonlinear optics:high harmonics with a twist[J]. Nature Physics, 2012, 8(10):707-708.
    [7] Parigi V, D'Ambrosio V, Arnold C, et al. Storage and retrieval of vector beams of light in a multipledegree-of-freedom quantum memory[J]. Nature Communications, 2015, 6:7706.
    [8] Willner A E, Huang H, Yan Y, et al. Optical communications using orbital angular momentum beams[J]. Advances in Optics and Photonics, 2015,7(1):66-106.
    [9] Curtis J E, Grier D G. Structure of optical vortices[J]. Physical Review Letters, 2003, 90(13):133901.
    [10] Yan L, Gregg P, Karimi E, et al. Q-plate enabled spectrally diverse orbital-angular-momentum conversion for stimulated emission depletion microscopy[J]. Optica, 2015, 2(10):900-903.
    [11] Apurv Chaitanya N, Chaitanya Kumar S, Devi K, et al. Ultrafast optical vortex beam generation in the ultraviolet[J]. Optics Letters, 2016, 41(12):2715-2718.
    [12] Cai X, Wang J, Strain M J, et al. Integrated compact optical vortex beam emitters[J]. Science,2012, 338(6105):363-366.
    [13] Yang Y M, Wang W Y, Moitra P, et al. Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation[J]. Nano Letters, 2014, 14(3):1394-1399.
    [14] Klauss A, Konig M, Hille C. Upgrade of a scanning confocal microscope to a single-beam path STED microscope[J]. PLoS ONE, 2015, 10(6):e0130717.
    [15] Gregg P, Kristensen P, Ramachandran S. 13. 4 km OAM state propagation by recirculating fiber loop[J]. Optics Express, 2016, 24(17):18938-18947.
    [16] Berweger S, Atkin J M, Olmon R L, et al.Adiabatic tip-plasmon focusing for nano-Raman spectroscopy[J]. The Journal of Physical Chemistry Letters, 2010, 1(24):3427-3432.
    [17] Barthes J, des Francs G C, Bouhelier A, et al. A coupled lossy local-mode theory description of a plasmonic tip[J]. New Journal of Physics, 2012, 14(8):083041.
    [18] Hayazawa N, Saito Y, Kawata S. Detection and characterization of longitudinal field for tip-enhanced Raman spectroscopy[J]. Applied Physics Letters,2004, 85(25):6239-6241.
    [19] Bretschneider S, Eggeling C, Hell S W. Breaking the diffraction barrier in fluorescence microscopy by optical shelving[J]. Physical Review Letters, 2007,98(21):218103.
    [20] Mino T, Saito Y, Yoshida H, et al. Molecular orientation analysis of organic thin films by zpolarization Raman microscope[J]. Journal of Raman Spectroscopy, 2012, 43(12):2029-2034.
    [21] Min C J, Shen Z, Shen J F, et al. Focused plasmonic trapping of metallic particles[J]. Nature Communications, 2013, 4:2891.
    [22] Saito Y, Verma P. Polarization-controlled Raman microscopy and nanoscopy[J]. The Journal of Physical Chemistry Letters, 2012, 3(10):1295-1300.
    [23] Ramachandran S, Kristensen P. Optical vortices in fiber[J]. Nanophotonics, 2013, 2(5/6):455-474.
    [24] Zhang W D, Huang L G, Wei K Y, et al. Highorder optical vortex generation in a few-mode fiber via cascaded acoustically driven vector mode conversion[J]. Optics Letters, 2016, 41(21):5082-5085.
    [25] Grosjean T, Courjon D, Spajer M. An all-fiber device for generating radially and other polarized light beams[J]. Optics Communications, 2002, 203(1/2):1-5.
    [26] Ndagano B, Brüning R, McLaren M, et al. Fiber propagation of vector modes[J]. Optics Express,2015, 23(13):17330-17336.
    [27] Gregg P, Kristensen P, Ramachandran S.Conservation of orbital angular momentum in air-core optical fibers[J]. Optica, 2015, 2(3):267-270.
    [28] Vengsarkar A M, Lemaire P J, Judkins J B, et al.Long-period fiber gratings as band-rejection filters[J]. Journal of Lightwave Technology, 1996,14(1):58-65.
    [29] Ramachandran S, Kristensen P, Yan M F.Generation and propagation of radially polarized beams in optical fibers[J]. Optics Letters, 2009, 34(16):2525-2527.
    [30] Bozinovic N, Golowich S, Kristensen P, et al.Control of orbital angular momentum of light with optical fibers[J]. Optics Letters, 2012, 37(13):2451-2453.
    [31] Li S H, Mo Q, Hu X, et al. Controllable all-fiber orbital angular momentum mode converter[J].Optics Letters, 2015, 40(18):4376-4379.
    [32] Zhang W D, Wei K Y, Huang L G, et al. Optical vortex generation with wavelength tunability based on an acoustically-induced fiber grating[J]. Optics Express, 2016, 24(17):19278-19285.
    [33] Zhang W D, Huang L G, Wei K Y, et al.Cylindrical vector beam generation in fiber with mode selectivity and wavelength tunability over broadband by acoustic flexural wave[J]. Optics Express, 2016,24(10):10376-10384.
    [34] Zhang W D, Wei K Y, Mao D, et al. Generation of femtosecond optical vortex pulse in fiber based on an acoustically induced fiber grating[J]. Optics Letters,2017, 42(3):454-457.
    [35] Zhang W D, Wei K Y, Wang H, et al. Tunablewavelength picosecond vortex generation in fiber and its application in frequency-doubled vortex[J].Journal of Optics, 2018, 20(1):014004.
    [36] Vayalamkuzhi P, Bhattacharya S, Eigenthaler U,et al. Direct patterning of vortex generators on a fiber tip using a focused ion beam[J]. Optics Letters, 2016, 41(10):2133-2136.
    [37] Ribeiro R S, Dahal P, Guerreiro A, et al. Optical fibers as beam shapers:from Gaussian beams to optical vortices[J]. Optics Letters, 2016, 41(10):2137-2140.
    [38] Weber K, Hiitt F, Thiele S, et al. Single mode fiber based delivery of OAM light by 3D direct laser writing[J]. Optics Express, 2017,25(17):19672-19679.
    [39] Alexeyev C N, Lapin B P, Milione G, et al.Publisher's note:optical activity in multihelicoidal optical fibers[J]. Physical Review A:Covering Atomic, Molecular, and Optical Physics and Quantum Information, 2015, 92(3):039905.
    [40] Fang L, Wang J. Flexible generation/conversion/exchange of fiber-guided orbital angular momentum modes using helical gratings[J]. Optics Letters,2015, 40(17):4010-4013.
    [41] Xu H X, Yang L. Conversion of orbital angular momentum of light in chiral fiber gratings[J]. Optics Letters, 2013, 38(11):1978-1980.
    [42] Dashti P Z, Alhassen F, Lee H P. Observation of orbital angular momentum transfer between acoustic and optical vortices in optical fiber[J]. Physical Review Letters, 2006, 96(4):043604.
    [43] Dashti P Z, Li Q, Lin C H, et al. Coherent acoustooptic mode coupling in dispersion-compensating fiber by two acoustic gratings with orthogonal vibration directions[J]. Optics Letters, 2003, 28(16):1403-1405.
    [44] Wei K Y, Zhang W D, Huang L G, et al.Generation of cylindrical vector beams and optical vortex by two acoustically induced fiber gratings with orthogonal vibration directions[J]. Optics Express,2017, 25(3):2733-2741.
    [45] Dong J L, Chiang K S. Temperature-insensitive mode converters with CO_2-laser written long-period fiber gratings[J]. IEEE Photonics Technology Letters, 2015, 27(9):1006-1009.
    [46] Zhao Y H, Liu Y Q, Zhang L, et al. Mode converter based on the long-period fiber gratings written in the two-mode fiber[J]. Optics Express,2016, 24(6):6186-6195.
    [47] Fu C L, Liu S, Wang Y, et al. High-order orbital angular momentum mode generator based on twisted photonic crystal fiber[J]. Optics Letters, 2018, 43(8):1786-1789.
    [48] Pidishety S, Srinivasan B, Brambilla G. All-fiber fused coupler for stable generation of radially andazimuthally polarized beams[J]. IEEE Photonics Technology Letters, 2017, 29(1):31-34.
    [49] Willig K I, Kellner R R, Medda R, et al. Nanoscale resolution in GFP-based microscopy[J]. Nature Methods, 2006, 3(9):721-723.
    [50] Schmidt R, Wurm C A, Jakobs S, et al. Spherical nanosized focal spot unravels the interior of cells[J].Nature Methods, 2008, 5(6):539-544.
    [51] Willig K I, Rizzoli S O, Westphal V, et al. STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis[J].Nature, 2006, 440(7086):935-939.
    [52] Willig K I, Harke B, Medda R, et al. STED microscopy with continuous wave beams[J]. Nature Methods, 2007, 4(11):915-918.
    [53] Yan L, Auksorius E, Bozinovic N, et al. Optical fiber vortices for STED nanoscopy[C]//CLEO:Science and Innovations 2013. San Jose:OSA Technical Digest(online). 2013:CTu3N. 2.
    [54] Gu M, Kang H, Li X P. Breaking the diffractionlimited resolution barrier in fiber-optical two-photon fluorescence endoscopy by an azimuthally-polarized beam[J]. Scientific Reports, 2014, 4:3627.
    [55] Bozinovic N, Yue Y, Ren Y, et al. Terabit-scale orbital angular momentum mode division multiplexing in fibers[J]. Science, 2013, 340(6140):1545-1548.
    [56] Li S H, Wang J. Multi-orbital-angular-momentum multi-ring fiber for high-density space-division multiplexing[J]. IEEE Photonics Journal, 2013, 5(5):7101007.
    [57] Li J P, Zhang J B, Li F, et al. DD-OFDM transmission over few-mode fiber based on direct vector mode multiplexing[J]. Optics Express, 2018,26(14):18749-18757.
    [58] Stockle R M, Suh Y D, Deckert V, et al. Nanoscale chemical analysis by tip-enhanced Raman spectroscopy[J]. Chemical Physics Letters, 2000,318(1/2/3):131-136.
    [59] Stadler J, Schmid T, Zenobi R. Nanoscale chemical imaging using top-illumination tip-enhanced Raman spectroscopy[J]. Nano Letters, 2010, 10(11):4514-4520.
    [60] Wang R, Wang J, Hao F H, et al. Tip-enhanced Raman spectroscopy with silver-coated optical fiber probe in reflection mode for investigating multiwall carbon nanotubes[J]. Applied Optics, 2010, 49(10):1845-1848.
    [61] Okuno Y, Saito Y, Kawata S, et al. Tip-enhanced Raman investigation of extremely localized semiconductor-to-metal transition of a carbonnanotube[J]. Physical Review Letters, 2013, 111(21):216101.
    [62] Kravtsov V, Ulbricht R, Atkin J M, et al.Plasmonic nanofocused four-wave mixing for femtosecond near-field imaging[J]. Nature Nanotechnology, 2016, 11(5):459-464.
    [63] Müller M, Kravtsov V, Paarmann A, et al.Nanofocused plasmon-driven sub-10 fs electron point source[J]. ACS Photonics, 2016, 3(4):611-619.
    [64] Berweger S, Atkin J M, Xu X G, et al.Femtosecond nanofocusing with full optical waveform control[J]. Nano Letters, 2011, 11(10):4309-4313.
    [65] Umakoshi T, Saito Y, Verma P. Highly efficient plasmonic tip design for plasmon nanofocusing in near-field optical microscopy[J]. Nanoscale, 2016, 8(10):5634-5640.
    [66] Tugchin B N, Janunts N, Klein A E, et al.Plasmonic tip based on excitation of radially polarized conical surface plasmon polariton for detecting longitudinal and transversal fields[J]. ACS Photonics, 2015, 2(10):1468-1475.
    [67] Ramachandran S, Smith C, Kristensen P, et al.Nonlinear generation of broadband polarisation vortices[J]. Optics Express, 2010, 18(22):23212-23217.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700