用户名: 密码: 验证码:
镀有增透膜的多层衍射光学元件的优化设计方法
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Optimal Design for Multi-Layer Diffractive Optical Elements with Antireflection Films
  • 作者:毛珊 ; 赵建林
  • 英文作者:Mao Shan;Zhao Jianlin;Shaanxi Key Laboratory of Optical Information Technology, School of Natural and Applied Sciences,Northwestern Polytechnical University;Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, Ministry of Education,School of Natural and Applied Sciences, Northwestern Polytechnical University;
  • 关键词:光学设计 ; 增透膜 ; 多色光积分衍射效率 ; 多层衍射光学元件 ; 入射角度 ; 衍射效率
  • 英文关键词:optical design;;antireflection film;;polychromatic integral diffraction efficiency;;multi-layer diffractive optical element;;angle of incidence;;diffraction efficiency
  • 中文刊名:GXXB
  • 英文刊名:Acta Optica Sinica
  • 机构:西北工业大学理学院陕西省光信息技术重点实验室;西北工业大学理学院超常条件材料物理与化学教育部重点实验室;
  • 出版日期:2018-11-13 10:08
  • 出版单位:光学学报
  • 年:2019
  • 期:v.39;No.444
  • 基金:国家自然科学基金(11634010);; 中国博士后科学基金(2018M643728)
  • 语种:中文;
  • 页:GXXB201903008
  • 页数:8
  • CN:03
  • ISSN:31-1252/O4
  • 分类号:76-83
摘要
基于等效介质理论和多层衍射元件的本体相位延迟,考虑增透膜相位调制的影响,对多层衍射光学元件的表面微结构参数进行优化;采用优化设计方法分析应用于可见光波段镀有增透膜的多层衍射光学元件。结果表明:优化设计方法在保证增透膜物理作用的前提下,实现了在设计波长处的衍射效率为100%以及在宽波段内具有高多色光积分衍射效率;该方法弥补了传统多层衍射光学元件的设计缺陷,完善了多层衍射光学元件的设计理论,为混合成像系统的设计提供了参考。
        On the basis of the equivalent-medium theory and the body phase delay of multi-layer diffractive optical elements, considering the influences of phase modulation caused by antireflection films, the surface microstructural parameters of multi-layer diffractive optical elements are optimized to realize the diffraction efficiency of 100% at the design wavelengths and the high polychromatic integral diffraction efficiency within a broad waveband. With this optimal design method, the diffraction efficiency and polychromatic integral diffraction efficiency of multi-layer diffractive optical elements with antireflection films working in visible wavebands are analyzed. The results show that with this optimal design method, the diffraction efficiency of 100% at the designed wavelengths and the high polychromatic integral diffraction efficiency within a broad waveband can be achieved under the premise of ensuring the physical effects of antireflection films. This method makes up for the traditional design defects of multi-layer diffractive optical elements and improves the design theory of multi-layer diffractive optical elements, which provides a reference for the design of hybrid imaging systems.
引文
[1] Sabushimike B, Horugavye G, Habraken S. Optimization of a multiblaze grating in reflection using a free-form profile[J]. Applied Optics, 2018, 57(18): 5048-5056.
    [2] Wu C, Gu H R, Zhou Z H, et al. Design of diffractive optical elements for subdiffraction spot arrays with high light efficiency[J]. Applied Optics, 2017, 56(31): 8816-8821.
    [3] Abdelhalim B, Fromager M, A?t-Ameur K. Extended focus depth for Gaussian beam using binary phase diffractive optical elements[J]. Applied Optics, 2018, 57(8): 1899-1903.
    [4] Gandhi V, Orava J, Tuovinen H, et al. Diffractive optical elements for optical identification[J]. Applied Optics, 2015, 54(7): 1606-1611.
    [5] Arrizón V, Ruiz U, Sánchez-de-la-Llave D, et al. Optimum generation of annular vortices using phase diffractive optical elements[J]. Optics Letters, 2015, 40(7): 1173-1176.
    [6] Nakai T, Ogawa H. Research on multi-layer diffractive optical elements and their application to camera lenses[C]//Magnusson R. Diffractive Optics and Micro-Optics: Vol 75. Washington, D.C.: Optical Society of America, 2002: DMA2.
    [7] Mao S, Cui Q F. Effect on polychromatic integral diffraction efficiency for two-layer diffractive optics[J]. Acta Optica Sinica, 2016, 36(1): 0105001. 毛珊, 崔庆丰. 双层衍射元件加工误差对多色光积分衍射效率的影响[J]. 光学学报, 2016, 36(1): 0105001.
    [8] Yang L L, Cui Q F, Liu T, et al. Effects of manufacturing errors on diffraction efficiency for multilayer diffractive optical elements[J]. Applied Optics, 2011, 50(32): 6128-6133.
    [9] Mao S, Cui Q F, Piao M X. Tolerance analysis of multilayer diffractive optics based on polychromatic integral diffraction efficiency[J]. Applied Optics, 2015, 54(32): 9528-9532.
    [10] Yang H F, Xue C X. Sensitivity of diffraction efficiency to period width errors for multilayer diffractive optical elements[J]. Applied Optics, 2018, 57(4): 855-860.
    [11] Jiang J, Liu J Q, Xu Y, et al. Laser direct writing technique of diffraction optical element on curved-surface sbustrate[J]. Chinese Journal of Lasers, 2017, 44(6): 0602002. 姜俊, 刘晋桥, 徐颖, 等. 曲面基底衍射光学元件的激光直写技术[J]. 中国激光, 2017, 44(6): 0602002.
    [12] Xue C X, Cui Q F, Pan C Y, et al. Design of multi-layer diffractive optical element with bandwidth integral average diffraction efficiency[J]. Acta Optica Sinica, 2010, 30(10): 3016-3020. 薛常喜, 崔庆丰, 潘春艳, 等. 基于多色光积分衍射效率的多层衍射光学元件设计[J]. 光学学报, 2010, 30(10): 3016-3020.
    [13] Xue C X, Cui Q F. Design of multilayer diffractive optical elements with polychromatic integral diffraction efficiency[J]. Optics Letters, 2010, 35(7): 986-988.
    [14] Xue C X, Cui Q F, Yang L L, et al. Design and analysis of multi-layer diffractive optical elements with Cauchy dispersion formula[J]. Acta Optica Sinica, 2011, 31(6): 0623002. 薛常喜, 崔庆丰, 杨亮亮, 等. 基于柯西色散公式的多层衍射光学元件的设计和分析[J]. 光学学报, 2011, 31(6): 0623002.
    [15] Liu X Q, Xue C X. Design of diffractive optical elements based on axicon and its light analysis[J]. Laser & Optoelectronics Progress, 2018, 55(4): 040501. 刘晓庆, 薛常喜. 基于轴棱锥的衍射光学元件设计及其光场分析[J]. 激光与光电子学进展, 2018, 55(4): 040501.
    [16] Chang C H, Dominguez-Caballero J A, Barbastathis G. Method for antireflection in binary and multi-level diffractive elements: US20120057235[P]. 2012-03-08.
    [17] Chang C H, Dominguez-Caballero J A, Choi H J, et al. Nanostructured gradient-index antireflection diffractive optics[J]. Optics Letters, 2011, 36(12): 2354-2356.
    [18] Pawlowski E, Kuhiow B. Antireflection-coated diffractive optical elements fabricated by thin-film deposition[J]. Optical Engineering, 1994, 33(11): 3537-3545.
    [19] Pawlowski E, Engel H, Fersti M, et al. Diffractive microlenses with antireflection coatings fabricated by thin film deposition[J]. Optical Engineering, 1994, 33(2): 647-652.
    [20] Mao S, Cui Q F, Piao M X. Optimal design method on diffractive optical elements with antireflection coatings[J]. Optics Express, 2017, 25(10): 11673-11678.
    [21] O′Shea D C, Suleski T J, Kathman A D, et al. Diffractive optics: design, fabrication, and test[M]. Bellingham: SPIE Press, 2003: 29-32.
    [22] Arieli Y, Ozeri S, Eisenberg N, et al. Design of a diffractive optical element for wide spectral bandwidth[J]. Optics Letters, 1998, 23(11): 823-824.
    [23] Buralli D A, Morris G M. Effects of diffraction efficiency on the modulation transfer function of diffractive lenses[J]. Applied Optics, 1992, 31(22): 4389-4396.
    [24] Swanson G J. Binary optics technology: the theory and design of multi-level diffractive optical elements[R]. Lexington: MIT Lincoln Laboratory Technical Report, 1989: 54.
    [25] Zhang B, Cui Q F, Piao M X. Effect of substrate material selection on polychromatic integral diffraction efficiency formultilayer diffractive optics in oblique incident situation[J]. Optics Communications, 2018, 415: 156-163.
    [26] Schulz U, Schallenberg U B, Kaiser N. Antireflection coating design for plastic optics[J]. Applied Optics, 2002, 41(16): 3107-3110.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700