用户名: 密码: 验证码:
聚吡咯吸波材料的研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research Progress of Polypyrrole Absorbing Materials
  • 作者:李文越 ; 赵晓明
  • 英文作者:LI Wen-yue;ZHAO Xiao-ming;School of Textile Science and Engineering,Tianjin Polytechnic University;
  • 关键词:聚吡咯 ; 吸波材料 ; 吸波参数 ; 导电材料 ; 复合材料
  • 英文关键词:polypyrrole;;wave-absorbing material;;absorbing parameters;;conductive material;;composite material
  • 中文刊名:CDFZ
  • 英文刊名:Journal of Textile Science and Engineering
  • 机构:天津工业大学纺织科学与工程学院;
  • 出版日期:2019-01-20
  • 出版单位:纺织科学与工程学报
  • 年:2019
  • 期:v.36;No.131
  • 基金:天津市高等学校基本科研业务资助项目(TJPU2k20170105);; 天津市教委科研计划项目(2017KJ070);; 全国大学生创新创业训练计划项目
  • 语种:中文;
  • 页:CDFZ201901030
  • 页数:8
  • CN:01
  • ISSN:51-1782/TS
  • 分类号:167-174
摘要
电子通讯科技的快速发展使得电磁波无处不在,电磁污染问题日突出,防电磁辐射的吸波材料越来越受到人们的重视。聚吡咯是一种典型的导电损耗型吸波材料,在受到外界磁场感应时,导体产生感应电流,感应电场产生与外界磁场方向相反的感应磁场,达到对电磁波的吸收和屏蔽。介绍了聚吡咯(PPy)的结构及评价吸波材料吸波性能的参数,总结了近几年聚吡咯(PPy)吸波材料的研究现状,并对发展前景进行了展望。
        With the rapid development of electronic communication technology,electromagnetic waves are ubiquitous and electromagnetic pollution problems are becoming prominent,which causes people to pay much more attention to the absorbing materials for anti-electromagnetic radiation. Polypyrrole is a typical conductive loss-type absorbing material. When induced by an external magnetic field,the conductor generates an induced current. The induced electric field generates an induced magnetic field opposite to the direction of the external magnetic field to absorb and shield the electromagnetic wave. The structure of polypyrrole and the parameters for evaluating the absorbing properties of polypyrrole were introduced. The research status of polypyrrole absorbing materials in recent years was summarized and the development prospects were made.
引文
[1]李祥鹏,马莹,邱夷平.GO/PPy磨毛织物电磁屏蔽性能研究[J].成都纺织高等专科学校学报,2017(1):21-23.
    [2]刘元军,孙嘉瑞,叶美晨,等.石墨涂层厚度对双层涂层玄武岩纤维织物电磁性能和力学性能的影响[J].纺织科学与工程学报,2018(4):1-5.
    [3]李泽,许宝才,王建江,等.吸波材料复合化的研究进展[J].功能材料,2016,47(S1):49-54.
    [4] Biswas S,Kar G P,Bose S. Microwave absorbers designed from PVDF/SAN blends containing multiwall carbon nanotubes anchored cobalt ferrite via pyrene derivative[J]. Journal of Materials Chemistry A,2015,3(23):12413-12426.
    [5] Chen Y H,Huang Z H,Lu MM,et al. 3D Fe3O4nanocrystals decorating carbon nanotubes to tune electromagnetic properties and enhance microwave absorption capacity[J]. Journal of Materials Chemistry A,2015,3(24):12621-12625.
    [6] Zeng Q,Xiong X,Chen P,et al. Air@r GO Fe3O4microspheres with spongy shell:self-assembly and microwave absorption performance[J]. Journal of Materials Chemistry C,2016,4(44).
    [7] Xian J,Wu B,Wei Y,et al. Facile Synthesis of Fe3O4/GCs Composites and their Enhanced Microwave Absorption Properties[J]. Acs Applied Materials&Interfaces,2016,8(9):6101.
    [8] Lv H,Liang X,Ji G,et al. The porous 3-Dimensional flower-like Co/Co O,and its excellent electromagnetic absorption properties[J]. Acs Applied Materials&Interfaces,2015,7(18).
    [9] Kong,L. Y.; Yin,X. W.; Yuan,X. Y.; Zhang,Y.J.; Liu,X.M.; Cheng,L. F.; Zhang,L. T. Electromagnetic Wave Absorption Properties of Graphene Modified with Carbon Nanotube/Poly(Dimethyl Siloxane)Composites[J]. Carbon 2014,73,185-193.
    [10] Qiu,J.; Qiu,T. T. Fabrication and Microwave Absorption Properties of Magnetite Nanoparticle-Carbon Nanotube-Hollow Carbon Fiber Composites[J]. Carbon2015,81,20-28.
    [11] Guo,J. L.; Wang,X. L.; Miao,P. L.; Liao,X. P.;Zhang,W. H.; Shi,B. One-Step Seeding Growth of Controllable Ag@Ni Core-Shell Nanoparticles on Skin Collagen Fiber with Introduction of Plant Tannin and Their Application in High-Performance Microwave Absorption[J]. J Mater Chem,2012,22,11933-11942.
    [12]赵晓明,鲁亚稳.吸波材料的最新研究进展及发展趋势[J].成都纺织高等专科学校学报,2016(3):120-124.
    [13] Tian,C.; Du,Y.; Xu,P.; et al. Constructing Uniform Core-Shell PPy@PANI Composites with Tunable Shell Thickness toward Enhancement in Microwave Absorption[J]. ACS Appl. Mater Interfaces,2015,7,20090-20099.
    [14] Yu,Z. X.; Zhang,N.; Yao,Z. P.; Han,X. J.;Jiang,Z. H. Synthesis of Hierarchical Dendritic MicroNano Structure Cox Fe1.x Alloy with Tunable Electromagnetic Absorption Performance[J]. J Mater Chem A,2013,1,12462.12470.
    [15] Zhao,P. F.; Liang,C. Y.; Gong,X. W.; Gao,R.;Liu, J. W.; Wang, M.; Che, R. C. Microwave Absorption Enhancement,Magnetic Coupling and Ab Initio Electronic Structure of Monodispersed(Mn1.x Cox)3O4Nanoparticles[J]. Nanoscale, 2013, 5,8022.8028.
    [16] Xiang,J.; Li,J. L.; Zhang,X. H.; Ye,Q.; Xu,J.H.; Shen,X. Q.Magnetic Carbon Nanofibers Containing Uniformly Dispersed Fe/Co/Ni Nanoparticles as Stable and High-Performance Electromagnetic Wave Absorbers[J].J Mater Chem A,2014,2,16905-16914.
    [17] Jiang,L. W.; Wang,Z. H.; Geng,D. Y.; Wang,Y.;An,J.; He,J.; Li,D.; Liu,W.; Zhang,Z. D. Carbon-Encapsulated Fe Nanoparticles Embedded in Organic Polypyrrole Polymer as A High Performance Microwave Absorber[J]. J Phys Chem C, 2016, 120, 28320-28329.
    [18] Liu,P. B.; Huang,Y.; et al. Sandwich Structures of Graphene@Fe3O4@PANI Decorated with Ti O2Nanosheets for Enhanced Electromagnetic Wave Absorption Properties[J]. Alloys Compd,2016,662,63-68.
    [19] Ren,Y.; Zhu,C.; Zhang,S.; Li,C.; Chen,Y.;Gao,P.; Yang,P.; Ouyang,Q. Three-Dimensional Si O2@Fe3O4Core/Shell Nanorod Array/Graphene Architecture:Synthesis and Electromagnetic Absorption Properties[J]. Nanoscale,2013,5,12296-12303.
    [20] Adhikari A,Radhakrishnan S,Vijayan M. Effect of the surface roughness of conducting polypyrrole thin‐film electrodes on the electrocatalytic reduction of nitrobenzene[J]. Journal of Applied Polymer Science,2012,125(3):1875-1881.
    [21] Li M,Wang W,Ma C,et al. Enhanced electrocatalytic activity of Pt nanoparticles modified with PPy-HEIm Tfa for electrooxidation of formaldehyde[J]. Journal of Electroanalytical Chemistry,2011,661(2):317-321.
    [22] Samseya J,Srinivasan R,Chang Y T,et al. Fabrication and characterisation of high performance polypyrrole modified microarray sensor for ascorbic acid determination[J]. Analytica Chimica Acta,2013,793(5):11-18.
    [23] Uygun Z O,Dilgin Y. A novel impedimetric sensor based on molecularly imprinted polypyrrole modified pencil graphite electrode for trace level determination of chlorpyrifos[J]. Sensors&Actuators B Chemical,2013,188(11):78-84.
    [24] Varis S,Ak M,Tanyeli C,et al. Synthesis and characterization of a new soluble conducting polymer and its electrochromic device[J]. Organic Electronics,2006,8(12):1477-1483.
    [25] Pomposo J A,Ochoteco E,Pozo C,et al. Conductivity enhancement in raw polypyrrole and polypyrrole nanoparticle dispersions[J]. Polymers for Advanced Technologies,2006,17(1):26-29.
    [26] Yu H,Jin J,Jian X,et al. Preparation of Cobalt Oxide Nanoclusters/Overoxidized Polypyrrole Composite Film Modified Electrode and Its Application in Nonenzymatic Glucose Sensing[J]. Electroanalysis,2013,25(7):1665-1674.
    [27]王婉秦,于德梅,解云川.聚吡咯及其共聚物的研究进展[J].高分子材料科学与工程,2011,27(7):175-178.
    [28]蒋彦嫚,胡书春.一步法制备银/聚吡咯复合材料及其电磁性能研究[J].科技创新导报,2017,14(21):61-62.
    [29]刘元军,赵晓明.吡咯浓度对聚吡咯涂层棉复合材料吸波性能的影响[J].材料科学与工艺,2016,24(6):51-55.
    [30]刘元军,刘国熠,赵晓明.聚吡咯/聚酯纤维复合材料吸波性能的探讨[J].材料科学与工艺,2017,25(4):31-37.
    [31]杜雪岩,虎秋,张龙,等.聚吡咯/Fe3O4球形纳米颗粒制备及其吸波性能[J].兰州理工大学学报,2017(6):29-33.
    [32]于志财,何华玲,王朝生,等. Fe3O4与聚吡咯对棉织物的防电磁辐射整理及屏蔽效能研究[J].丝绸,2018,55(2):19-24.
    [33]张松林.基于层层组装聚吡咯/氧化石墨烯多层膜的吸波织物[D].上海:东华大学,2015.
    [34] Xie A,Wu F,Xu Z,et al. In situ preparation of ultralight three-dimensional polypyrrole/nano Si O2,composite aerogels with enhanced electromagnetic absorption[J]. Composites Science&Technology,2015,117:32-38.
    [35] Chen X,Chen J,Meng F,et al. Hierarchical composites of polypyrrole/graphene oxide synthesized by in situ,intercalation polymerization for high efficiency and broadband responses of electromagnetic absorption[J].Composites Science&Technology,2016,127:71-78.
    [36]王依然,陈玉金,朱春玲.聚吡咯纳米线/石墨烯复合材料的电磁波吸收特性[J].中国科学:物理学力学天文学,2017,47(12):135-138.
    [37] Zhao H,Hou L,Lu Y. Electromagnetic interference shielding of layered linen fabric/polypyrrole/Nickel(LF/PPy/Ni)composites[J]. Materials&Design,2016,95:97-106.
    [38] Babayan V,Kazantseva N E,Mouc(ka R,et al. Electromagnetic shielding of polypyrrole–sawdust composites:polypyrrole globules and nanotubes[J]. Cellulose,2017,24(8):3445-3451.
    [39] Xie A,Zhang K,Sun M,et al. Facile growth of coaxial Ag@polypyrrole nanowires for highly tunable electromagnetic waves absorption[J]. Materials&Design,2018.
    [40] Liu P,Huang Y,Zhang X. Synthesis and excellent microwave absorption properties of graphene/polypyrrole composites with Fe3O4,particles prepared via a co-precipitation method[J]. Materials Letters, 2014, 129(21):35-38.
    [41] Yang R B,Reddy P M,Chang C J,et al. Synthesis and characterization of Fe3O4/polypyrrole/carbon nanotube composites with tunable microwave absorption properties:Role of carbon nanotube and polypyrrole content[J]. Chemical Engineering Journal,2016,285:497-507.
    [42] Wang X, Yan H, Xue R, et al. A Polypyrrole/Co Fe2O4/Hollow Glass Microspheres three-layer sandwich structure microwave absorbing material with wide absorbing bandwidth and strong absorbing capacity[J]. Journal of Materials Science Materials in Electronics,2017,28(1):519-525.
    [43]张龙,万晓娜,段文静,等. Fe3O4@聚吡咯@聚苯胺核壳结构的制备及吸波性能[J].高等学校化学学报,2018(1):185-192.
    [44] Cheng Y,Hu P,Zhou S,et al. Achieving tunability of effective electromagnetic wave absorption between the whole X-band and Ku-band via adjusting PPy loading in Si C nanowires/graphene hybrid foam[J].Carbon,2018.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700