用户名: 密码: 验证码:
植物-微生物联合修复技术在Cd污染土壤中的研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Advances in Plant-Microbial Joint Repair Technology in Cd Contaminated Soil Restoration
  • 作者:卢晋晶 ; 郜春花 ; 武雪萍 ; 李建华 ; 靳东升 ; 郜雅静 ; 籍晟煜
  • 英文作者:LU Jinjing;GAO Chunhua;WU Xueping;LI Jianhua;JIN Dongsheng;GAO Yajing;JI Shengyu;Institute of Agricultural Environment and Resources,Shanxi Academy of Agricultural Sciences;Institute of Agricultural Resources and Regional Planning,Chinese Academy of Agricultural Sciences;College of Biological Engineering,Shanxi University;
  • 关键词:Cd ; 土壤 ; 植物 ; 微生物 ; 联合修复技术
  • 英文关键词:Cd;;soil;;plant;;microorganism;;joint repair technology
  • 中文刊名:SXLX
  • 英文刊名:Journal of Shanxi Agricultural Sciences
  • 机构:山西省农业科学院农业环境与资源研究所;中国农业科学院农业资源与农业区划研究所;山西大学生物工程学院;
  • 出版日期:2019-06-18
  • 出版单位:山西农业科学
  • 年:2019
  • 期:v.47;No.400
  • 基金:山西省农业科学院重点攻关项目(YGG1628);山西省农业科学院科技自主创新能力提升工程项目(2017ZZCX-13);; 山西省重点研发计划(指南)项目(201603D421044);山西省重点研发计划重点项目(201603D21110-1)
  • 语种:中文;
  • 页:SXLX201906042
  • 页数:6
  • CN:06
  • ISSN:14-1113/S
  • 分类号:193-198
摘要
近些年土壤Cd污染治理备受关注。植物-微生物联合修复技术是修复重金属污染土壤的重要方法之一,也是国内外研究的热点。主要论述了植物和微生物在土壤中对重金属元素的作用机制以及二者之间的协同修复机制,总结了目前已经发现对Cd具有富集作用的植物种类和微生物类型,并讨论了植物-微生物联合修复技术今后的研究重点。
        In recent years, plant-microbial joint repair technology is one of the important methods for heavy metal contaminated soil restoration, which has been a research hot spot at home and abroad. Especially, researchers have paid more attention to soil restoration in heavy metal cadmium(Cd). The study mainly discussed the synergistic repair mechanism between plants and microorganisms on heavy metal pollution soil, and statisticed the plant and microbial species having enrichment effect on Cd, and analyzed the research focus on plant-microbial joint repairing in the future.
引文
[1]柳絮,范仲学,张斌,等.我国土壤镉污染及其修复研究[J].山东农业科学,2007(6):94-97.
    [2]冉烈,李会合.土壤镉污染现状及危害研究进展[J].重庆高教研究,2011,30(4):69-73.
    [3]常青.“镉大米”给人类以警告[J].中国食品,2013(11):56.
    [4]环境保护部,国土资源部.全国土壤污染状况调查公报[R].北京:中华人民共和国国土资源部,2014.
    [5]李婧,周艳文,陈森,等.我国土壤镉污染现状、危害及其治理方法综述[J].安徽农学通报,2015,21(24):104-107.
    [6]刘洋,张玉烛,方宝华,等.栽培模式对水稻镉积累差异及其与光合生理关系的研究[J].农业资源与环境学报,2014(5):450-455.
    [7]崔俊义,马友华,王陈丝丝,等.农田土壤镉污染原位钝化修复技术的研究进展[J].中国农学通报,2017(30):79-83.
    [8]朱宇辰.镉抗性细菌Cupriavidus campinensis KQ46的分离鉴定及其镉抗性机制研究[D].南京:南京农业大学,2013.
    [9] SEPEHRI M,KHODAVERDILOO H,ZAREI M. Fungi and their role in phytoremediation of heavy metal-contaminated soils[J]. Soil Biology,2013,32:313-345.
    [10]胡鹏杰,李柱,钟道旭,等.我国土壤重金属污染植物吸取修复研究进展[J].植物生理学报,2014,50(5):577-584.
    [11]张军,蔺亚青,胡方洁,等.土壤重金属污染联合修复技术研究进展[J].应用化工,2018(5):1038-1042,1047.
    [12]徐爱春,陈益泰.镉污染土壤根际环境的调节与植物修复研究进展[J].中国土壤与肥料,2007(2):1-6.
    [13]段德超,于明革,施积炎.植物对铅的吸收、转运、累积和解毒机制研究进展[J].应用生态学报,2014,25(1):287-296.
    [14]杨红玉,王焕校.绿藻的镉结合蛋白及其耐镉性初探[J].植物生理学报,1985(4):41-49.
    [15]梅娟,李华,郭翠花. Cd超富集植物修复污染土壤的研究进展[J].能源与节能,2013(2):80-82.
    [16]严重玲,付舜珍. Hg、Cd及其共同作用对烟草叶绿素含量及抗氧化酶系统的影响[J].植物生态学报,1997,21(5):468-473.
    [17]刘家忠,龚明.植物抗氧化系统研究进展[J].云南师范大学学报(自然科学版),1999(6):1-11.
    [18]张玉秀,金玲,冯珊珊,等.镉对镉超累积植物龙葵抗氧化酶活性及基因表达的影响[J].中国科学院大学学报,2013,30(1):11-17.
    [19]杨卫东,陈益泰.镉胁迫对旱柳细胞膜透性和抗氧化酶活性的影响[J].西北植物学报,2008,28(11):2263-2269.
    [20]崔婧.水杨酸与植物抗逆性[J].安徽农学通报,2007,13(9):35-38.
    [21]张辉.暖季型草坪草对土壤镉的耐受阈值与富集能力的研究[D].上海:上海交通大学,2012.
    [22]常海伟,刘代欢,贺前锋.重金属污染农田微生物修复机理研究进展[J].微生物学杂志,2018,38(2):120-127.
    [23]樊霆.真菌对重金属的抗性机制和富集特性研究[D].长沙:湖南大学,2009.
    [24]刘磊,宋文成.微生物吸附重金属离子机理研究进展[J].安徽农业科学,2018,46(5):15-17.
    [25]杨丽,燕传明,贺卓,等.重金属耐性芽孢杆菌的筛选及其对辣椒吸收镉铅的阻控效应[J].农业环境科学学报,2018,37(6):1086-1093.
    [26]郭学军,黄巧云,赵振华,等.微生物对土壤环境中重金属活性的影响[J].应用与环境生物学报,2002,8(1):105-110.
    [27]王丹,夏险,王革娇,等.微生物对硒的还原及其产物的应用研究进展:纪念硒发现200周年[J].微生物学通报,2017,44(7):1728-1735.
    [28]林惠荣.水稻土壤重金属和硫分子形态转化的功能微生物作用机制[D].杭州:浙江大学,2010.
    [29]李韵诗,冯冲凌,吴晓芙,等.重金属污染土壤植物修复中的微生物功能研究进展[J].生态学报,2015,35(20):6881-6890.
    [30]杨雪艳,蒋代华,史进纳,等.“双耐”细菌-香根草对铅镉复合污染土壤的修复机理[J].应用与环境生物学报,2016,22(5):884-890.
    [31]江春玉.植物促生细菌提高植物对铅、镉的耐受性及富集效应研究[D].南京:南京农业大学,2008.
    [32]郜春花,王岗,董云中,等.解磷菌剂盆栽及大田施用效果[J].山西农业科学,2003,31(3):40-43.
    [33] ELBELTAGY A. Endophytic colonization and in planta nitrogen fixation by a Herbaspirillum sp. isolated from wild rice species[J].Applied&Environmental Microbiology,2001,67(11):5285.
    [34] WU S C,CHEUNG K C,LUO Y M,et al. Effects of inoculation of plant growth-promoting rhizobacteria on metal uptake by Brassica juncea[J]. Environmental Pollution,2006,140(1):124-135.
    [35] BABU A G,SHEA P J,OH B T. Trichoderma sp. PDR1-7 promotes Pinus sylvestris reforestation of lead-contaminated mine tailing sites[J]. Science of the Total Environment,2014,476/477:561-567.
    [36] GARG N,AGGARWAL N. Effect of mycorrhizal inoculations on heavy metal uptake and stress alleviation of Cajanus cajan(L.)Millsp. genotypes grown in cadmium and lead contaminated soils[J]. Plant Growth Regulation,2012,66(1):9-26.
    [37]黄丽丹,陈玉惠.生防菌及相关生物技术在植物病害防治中的应用[J].西南林业大学学报,2006,26(1):85-89.
    [38]曹书苗.放线菌强化植物修复土壤铅镉污染的效应及机理[D].西安:长安大学,2016.
    [39] RAJKUMAR M,SANDHYA S,PRASAD M N V,et al. Perspectives of plant-associated microbes in heavy metal phytoremediation[J]. Biotechnology Advances,2012,30(6):1562-1574.
    [40]JOSHI P M,JUWARKAR A A. In vivo studies to elucidate the role of extracellular polymeric substances from Azotobacter in immobilization of heavy metals[J]. Environmental Science&Technology,2009,43(15):5884-5889.
    [41]FISCHER K,BIPP H P. Removal of heavy metals from soil components and soils by natural chelating agents. Part II. Soil extraction by sugar acids[J]. Water Air and Soil Pollution,2002,138(1/4):271-288.
    [42]杨卓,王占利,李博文,等.微生物对植物修复重金属污染土壤的促进效果[J].应用生态学报,2009,20(8):2025-2031.
    [43]聂发辉.关于超富集植物的新理解[J].生态环境,2005,14(1):136-138.
    [44]刘周莉,何兴元,陈玮.忍冬:一种新发现的镉超富集植物[J].生态环境学报,2013(4):666-670.
    [45] GUO J,XU W,MA M. The assembly of metals chelation by thiols and vacuolar compartmentalization conferred increased tolerance to and accumulation of cadmium and arsenic in transgenic Arabidopsis thaliana[J]. Journal of Hazardous Materials,2012,199/200:309-313.
    [46] GASIC K,KORBAN S S. Transgenic Indian mustard(Brassica juncea)plants expressing an Arabidopsis phytochelatin synthase(At PCS1)exhibit enhanced As and Cd tolerance[J]. Plant Molecular Biology,2007,64(4):361-369.
    [47] DAS N,BHATTACHARYA S,MAITI M K. Enhanced cadmium accumulation and tolerance in transgenic tobacco overexpressing rice metal tolerance protein gene Os MTP1 is promising for phytoremediation[J]. Plant Physiology and Biochemistry,2016,105:297-309.
    [48]李希铭.草本植物对镉的耐性和富集特征研究[D].北京:北京林业大学,2016.
    [49]熊愈辉.镉污染土壤植物修复研究进展[J].安徽农业科学,2007,35(22):6876-6878.
    [50]魏树和,周启星,王新. 18种杂草对重金属的超积累特性研究[J].应用基础与工程科学学报,2003,11(2):152-160.
    [51]刘红娟,党志,张慧,等.蜡状芽孢杆菌抗重金属性能及对镉的累积[J].农业环境科学学报,2010,29(1):25-29.
    [52]谢洁丽. NTA和铜绿假单细胞菌ATCC 9027对苎麻修复重金属Cd污染土壤的研究[D].长沙:湖南大学,2016.
    [53]邵云,郝真真,王海磊,等.麦田土壤中抗铅菌株筛选及其吸附特性的研究[J].华北农学报,2016,31(6):199-205.
    [54]刘云国,冯宝莹,樊霆,等.真菌吸附重金属离子的研究[J].湖南大学学报(自然科学版),2008,35(1):71-74.
    [55]孔凡美,史衍玺,冯固,等. AM菌对三叶草吸收、累积重金属的影响[J].中国生态农业学报,2007,15(3):92-96.
    [56] SHABANI L,SABZALIAN M R,POUR S M. Arbuscular mycorrhiza affects nickel translocation and expression of ABC transporter and metallothionein genes in Festuca arundinacea[J]. Mycorrhiza,2016,26(1):67-76.
    [57] TAN S Y,JIANG Q Y,ZHUO F,et al. Effect of inoculation with glomus versiforme on cadmium accumulation,antioxidant activities and phytochelatins of Solanum photeinocarpum[J]. PLOS ONE,2015,10(7):e0132347.
    [58] CHEN B D,ZHU Y G,DUAN J,et al. Effects of the arbuscular mycorrhizal fungus Glomus mosseae on growth and metal uptake by four plant species in copper mine tailings[J]. Environmental Pollution,2007,147(2):374-380.
    [59] RAVEL J,AMOROSO M J,COLWELL R R,et al. Mercury resistant actinomycetes from the Chesapeake Bay[J]. Fems Microbiology Letters,1998,162(1):177-184.
    [60]DIMKPA C O,MERTEN D,SVATOS A,et al. Siderophores mediate reduced and increased uptake of cadmium by Streptomyces tendae F4 and sunflower(Helianthus annuus),respectively[J].Journal of Applied Microbiology,2010,107(5):1687-1696.
    [61] SCHUTZE E,KLOSE M,MERTEN D,et al. Growth of streptomycetes in soil and their impact on bioremediation[J]. Journal of Hazardous Materials,2014,267(3):128-135.
    [62] KUFFNER M,PUSCHENREITER M,WIESHAMMER G,et al.Rhizosphere bacteria affect growth and metal uptake of heavy metal accumulating willows[J]. Plant and Soil,2008,304(1/2):35-44.
    [63]李慧芬.重金属抗性放线菌的筛选鉴定及其锌离子吸附研究[D].杨凌:西北农林科技大学,2010.
    [64] ROMERA E,GONZáLEZ F,BALLESTER A,et al. Biosorption with Algae:A statistical review[J]. Critical Reviews in Biotechnology,2006,26(4):223-235.
    [65]刘珺,周培国.趋磁细菌应用于重金属废水处理的研究进展[J].环境科技,2008,21(6):60-63.
    [66]瞿飞,范成五,刘桂华,等.钝化剂修复重金属污染土壤研究进展[J].山西农业科学,2017,45(9):1561-1565,1576.
    [67]张敏,郜春花,李建华,等.重金属污染土壤生物修复技术研究现状及发展方向[J].山西农业科学,2017,45(4):674-676.
    [68]郜雅静,李建华,靳东升,等.重金属污染土壤的微生物修复技术探讨[J].山西农业科学,2018,46(1):150-154.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700