用户名: 密码: 验证码:
无人值守的太阳反射波段超光谱辐照度仪的光机系统设计
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Opto-Mechanical Design of Unattended Irradiance Spectroradiometer in Reflective Solar Bands
  • 作者:张权 ; 李新 ; 张艳娜 ; 翟文超 ; 刘恩超 ; 郑小兵
  • 英文作者:Zhang Quan;Li Xin;Zhang Yanna;Zhai Wenchao;Liu Enchao;Zheng Xiaobing;Key Laboratory of Optical Calibration and Characterization, Anhui Institute of Optics and Fine Mechanics,Chinese Academy of Sciences;University of Science and Technology of China;
  • 关键词:光学器件 ; 光学遥感 ; 无人值守 ; 光机系统设计 ; 辐照度基法
  • 英文关键词:optical devices;;optical remote sensing;;unattended;;opto-mechanical system design;;irradiance-based method
  • 中文刊名:GXXB
  • 英文刊名:Acta Optica Sinica
  • 机构:中国科学院安徽光学精密机械研究所通用光学定标与表征技术重点实验室;中国科学技术大学;
  • 出版日期:2018-12-03 16:36
  • 出版单位:光学学报
  • 年:2019
  • 期:v.39;No.444
  • 基金:十三五航天预研项目(D040401);; 国家自然科学基金青年项目(41705013);国家自然科学基金(61505222);; 中国科学院安徽光学精密机械研究所所长基金(AGHH201503)
  • 语种:中文;
  • 页:GXXB201903043
  • 页数:10
  • CN:03
  • ISSN:31-1252/O4
  • 分类号:354-363
摘要
介绍了自行研制的太阳反射波段超光谱辐照度仪的光机系统设计。仪器的光谱范围为400~2500 nm,包括三个分光探测单元,可实现太阳总辐照度、天空漫射辐照度、太阳直射辐照度和漫总比的长期自动测量。为验证光机系统设计的合理性,对外场实验数据进行了分析。通过与传统人工测量漫总比数据的对比,发现两种方法的漫总比偏差小于2%。仪器具备与传统测量方式相当的辐照度测量精度,在卫星遥感器自动化定标中具有一定的优势。
        The opto-mechanical system design of self-developed irradiance spectroradiometer in reflective solar bands is introduced. The instrument has a spectral range of 400-2500 nm, including three spectral modules, and it can achieve automatic long-term measurement of total solar irradiance, diffuse sky irradiance, direct solar irradiance and the ratio of diffuse irradiance to full irradiance. In order to verify the rationality of the opto-mechanical design, we analyze the field experimental data. Comparing with the ratio data of the traditional manual measurement, it is found that the ratio deviation of the two methods is less than 2%. The instrument has the same irradiance measurement accuracy comparable to the traditional measurement method, and has certain advantages in the automatic calibration of satellite remote sensor.
引文
[1] Slater P N, Biggar S F, Holm R G, et al. Reflectance- and radiance-based methods for the in-flight absolute calibration of multispectral sensors[J]. Remote Sensing of Environment, 1987, 22(1): 11-37.
    [2] Biggar S F, Dinguirard M C, Gellman D I, et al. Radiometric calibration of SPOT 2 HRV: A comparison of three methods[J]. Proceedings of SPIE, 1991, 1493: 155-162.
    [3] Thome K J. Validation plan for MODIS level 1 at sensor radiance[R]. Tucson: University of Arizona, 1999.
    [4] Gu X F, Tian G L, Yu T, et al. The radiometric calibration principle and method of space remote sensor[M]. Beijing: Science Press, 2013: 199-203. 顾行发, 田国良, 余涛, 等. 航天光学遥感器辐射定标原理与方法[M]. 北京: 科学出版社, 2013: 199-203.
    [5] Qiu G G, Li X, Wei W, et al. Experiment and analysis of on-orbit radiometric calibration for remote sensors based on in-site automated observation technology[J]. Acta Optica Sinica, 2016, 36(7): 0701001. 邱刚刚, 李新, 韦玮, 等. 基于场地自动化观测技术的遥感器在轨辐射定标试验与分析[J]. 光学学报, 2016, 36(7): 0701001.
    [6] Li X, Zheng X B, Yin Y P. Progress in automated site vicarious calibration technologies[J]. Journal of Atmospheric and Environmental Optics, 2014, 9(1): 17-21. 李新, 郑小兵, 尹亚鹏. 场地自动化定标技术进展[J]. 大气与环境光学学报, 2014, 9(1): 17-21.
    [7] Czapla-Myers J S, Thome K J, Leisso N P. Radiometric calibration of earth-observing sensors using an automated test site at Railroad Valley, Nevada[J]. Canadian Journal of Remote Sensing, 2010, 36(5): 474-487.
    [8] Czapla-Myers J S. Automated ground-based methodology in support of vicarious calibration[D]. Tucson: The University of Arizona, 2006: 41-43, 54-57.
    [9] Hu X Q, Zhang Y X, Qiu K M. In-flight radiometric calibration for VIR channels of FY-1C satellite sensor by using irradiance-based method[J]. Journal of Remote Sensing, 2003, 7(6): 458-464. 胡秀清, 张玉香, 邱康睦. 采用辐照度基法对FY-1C气象卫星可见近红外通道进行绝对辐射定标[J]. 遥感学报, 2003, 7(6): 458-464.
    [10] Liu E C, Li X, Wei W, et al. Automatic field calibration and analysis of satellite based on hyper-spectral ratio radiometer[J]. Spectroscopy and Spectral Analysis, 2016, 36(12): 4076-4081. 刘恩超, 李新, 韦玮, 等. 基于超光谱比值辐射仪的卫星自动化场地定标与分析[J]. 光谱学与光谱分析, 2016, 36(12): 4076-4081.
    [11] Dai C H, Yu J L, Yu J, et al. Calculation of the equivalent radiation plane for the spherical entrance optics[J]. Acta Metrologica Sinica, 2006, 27(3): 236-240. 代彩红, 于家琳, 于靖, 等. 球冠型入射光学系统中等效辐射平面位置的计算[J]. 计量学报, 2006, 27(3): 236-240.
    [12] Shi S X, Wang X E, Liu J S. Physical optics and applied optics[M]. Xi′an: Xi′an University of Electronic Science and Technology Press, 2008, 332-336. 石顺祥, 王学恩, 刘劲松. 物理光学与应用光学[M]. 西安: 西安电子科技大学出版社, 2008, 332-336.
    [13] Jin W Q, Hu W J. Radiometry, luminance and chromaticity[M]. Beijing: Beijing Institute of Technology Press, 2003: 34. 金伟其, 胡威捷. 辐射度光度与色度及其测量[M]. 北京: 北京理工大学出版社, 2003: 34.
    [14] Labsphere. A guide to integrating sphere theory and applications[EB/OL]. (2013-04-22)[2018-09-08].http://www.labsphere.com/technical/technical-guides.aspx.
    [15] Sandgren V. Characterization of an integrating sphere radiation reference source[D]. G?tebory: Chalmers University of Technology, 2011: EX084/2011.
    [16] Yang B Y, Zhang L M, Chen H Y, et al. System design of the integrating sphere used for on-board calibration of visible-SWIR hyperspectral remote sensors[J]. Acta Optica Sinica, 2009, 29(12): 3545-3550. 杨本永, 张黎明, 陈洪耀, 等. 可见-短波红外高光谱星上定标用积分球系统的设计[J]. 光学学报, 2009, 29(12): 3545-3550.
    [17] He Y W, Li P, Feng G J, et al. Computer modeling of a large-area integrating sphere uniform radiation source for calibration of satellite remote sensors[J]. Optik, 2011, 122(13): 1143-1145.
    [18] Li X, Zheng X B, Hong J, et al. Optical and mechanical design of SWIR hyperspectral field spectroradiometer[J]. Optics and Precision Engineering, 2007, 15(11): 1656-1661. 李新, 郑小兵, 洪津, 等. 高光谱短波红外地物光谱仪的光机设计[J]. 光学精密工程, 2007, 15(11): 1656-1661.
    [19] Polymicro Technologies. The book on the technologies of Polymicro[EB/OL]. (2018-09-08)[2018-09-08]. http://www.polymicro.com.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700