用户名: 密码: 验证码:
塔里木克拉通东北缘Columbia超大陆裂解事件:库鲁克塔格地区辉绿岩床的地球化学、锆石U-Pb年代学和Hf-O同位素证据
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:New evidence for the breakup of the Columbia supercontinent from the northeastern margin of Tarim Craton:rock geochemistry,zircon U-Pb geochronology and Hf-O isotopic compositions of the ca.1.55 Ga diabase sills in the Kuruktag area
  • 作者:张健 ; 李怀坤 ; 张传林 ; 田辉 ; 钟焱 ; 叶现韬
  • 英文作者:ZHANG Jian;LI Huaikun;ZHANG Chuanlin;TIAN Hui;ZHONG Yan;YE Xiantao;Tianjin Center of Geological Survey,China Geological Survey;College of Oceanography,Hohai University;
  • 关键词:塔里木克拉通 ; 库鲁克塔格 ; Columbia超大陆裂解 ; 中元古代 ; 辉绿岩
  • 英文关键词:Tarim Craton;;Kuruktag;;Columbia supercontinent breakup;;Mesoproterozoic;;diabase
  • 中文刊名:DXQY
  • 英文刊名:Earth Science Frontiers
  • 机构:中国地质调查局天津地质调查中心;河海大学海洋学院;
  • 出版日期:2018-12-12 14:39
  • 出版单位:地学前缘
  • 年:2018
  • 期:v.25;No.134
  • 基金:中国地质调查局地质调查项目(121201102000150009-06)
  • 语种:中文;
  • 页:DXQY201806011
  • 页数:18
  • CN:06
  • ISSN:11-3370/P
  • 分类号:112-129
摘要
研究塔里木克拉通东北缘库鲁克塔格地区发育的中元古代早期基性岩浆活动,对深入了解Columbia超大陆裂解过程具有重要意义。本文报道了库鲁克塔格地区侵入于兴地塔格群的阿斯廷布拉克辉绿岩床SHRIMP锆石U-Pb年龄,结合岩石学、地球化学和Nd-Hf-O同位素资料,对该基性岩的形成时代、岩浆起源和源区类型以及岩浆作用的动力学背景进行讨论。研究表明:辉绿岩锆石具有高Th/U比值(>1),CL图像带状分区,显示基性岩浆锆石特点,~(207)Pb/~(206)Pb加权平均年龄(1 551±8)Ma代表辉绿岩的形成时代,锆石δ~(18) O值为5.52‰~6.53‰(正态分布的峰值为5.8‰),略高于地幔锆石的变化范围。辉绿岩高FeO~T(11.4%~13.4%),低MgO(5.46%~7.11%)和TiO_2(1.51%~2.45%),具有拉斑质属性,轻、重稀土元素分馏明显((La/Yb)_N=4.6~5.4),具弱的Eu正异常(δEu=1.05~1.27),富集大离子亲石元素(LILE),亏损Nb、Ta等高场强元素(HFSE),微量元素组成与大陆溢流玄武岩(CFB)类似,全岩Nd(ε_(Nd)(t)=-3.8~-1.8)和锆石Hf(ε_(Hf)(t)=-3.7~1.9)同位素均显示岩浆来自富集地幔。阿斯廷布拉克辉绿岩是被交代的大陆岩石圈地幔部分熔融的产物,形成于板内的拉张环境,与该时期全球构造演化体制相吻合,属于中元古代早期Columbia超大陆裂解事件。
        The Mesoproterozoic diabase sills from Kuruktag along the northeastern margin of the Tarim Craton (TC) is of great significance for the understanding of the breakup of the Columbia supercontinent.In this contribution,we report new sensitive high-resolution ion microprobe (SHRIMP) zircon U-Pb ages and in-situ Hf-O isotopes,as well as whole-rock elemental and Sr-Nd isotopic data for the Astingbulake diabase sills.Zircons had high Th/U ratio and banded zoning in cathodoluminescence images,indicating their mafic magmatic origin,and yielded a weighted ~(207)Pb/~(206)Pb age of 1551±8 Ma and elevated δ~(18) O values of 5.52‰to 6.53‰ (Gaussian distribution peak at 5.8‰) relative to mantle zircons.Geochemically,the diabase samples are characterized by high FeO~T(11.4%-13.4%),low TiO_2(1.51%-2.45%) and MgO(5.46%-7.11%) contents with Mg~# ranging from 43 to 52.They contained relatively low REEs contents(90.1-116)×10~(-6) with slightly positive Eu anomalies(δEu=1.05-1.27).Moreover,these samples are featured by enrichment in light rare earth elements(LREEs)and large ion lithophile elements(LILE)and depletion in heavy rare earth elements (HREEs) and Nb-Ta high field strength elements (HFSEs),consistent geochemical features with continental flood basalts(CFB).The coupled whole rock Nd and zircon Hf isotope compositions,with ε_(Nd)(t)ranging from-3.8 to-1.8 and ε_(Hf)(t) from-3.7 to 1.9,suggest that the Astingbulake diabase sills derived from enriched continental lithospheric mantle within intra-plate rifting or extensional setting,and the ca.1.55 Ga diabase is closely related in time to the global early-Mesoproterozoic anorogenic magmatism associated with the breakup of Columbia supercontinent.
引文
[1]陆松年,于海峰,李怀坤,等.中国前寒武纪重大地质问题研究:中国西部前寒武纪重大地质事件群及其全球构造意义[M].北京:地质出版社,2006:1-197.
    [2]张传林,李怀坤,王洪燕.塔里木地块前寒武纪地质研究进展评述[J].地质论评,2012,58(5):923-936.
    [3]ZHANG C L,ZOU H B,LI H K,et al.Tectonic framework and evolution of the Tarim Block in NW China[J].Gondwana Research,2013,23(4):1306-1315.
    [4]郭召杰,张志诚,刘树文,等.塔里木克拉通早前寒武纪基底层序与组合:颗粒锆石U-Pb年龄新证据[J].岩石学报,2003,19(3):537-542.
    [5]胡霭琴,韦刚健.塔里木盆地北缘新太古代辛格尔灰色片麻岩形成时代问题[J].地质学报,2006,80(1):126-134.
    [6]LU S N,LI H K,ZHANG C L,et al.Geological and geochronological evidence for the Precambrian evolution of the Tarim Craton and surrounding continental fragments[J].Precambrian Research,2008,160(1/2):94-107.
    [7]SHU L S,DENG X L,ZHU W B,et al.Precambrian tectonic evolution of the Tarim Block,NW China:new geochronological insights from the Quruqtagh domain[J].Journal of Asian Earth Sciences,2011,42:774-790.
    [8]ZHANG C L,LI H K,SANTOSH M,et al.Precambrian evolution and cratonization of the Tarim Block,NW China:petrology,geochemistry,Nd-isotopes and U-Pb zircon geochronology from Archaean gabbro-TTG-potassic granite suite and Paleoproterozoic metamorphic belt[J].Journal of Asian Earth Sciences,2012,47(1):5-20.
    [9]LONG X P,YUAN C,SUN M,et al.Archean crustal evolution of the northern Tarim Craton,NW China:zircon U-Pb and Hf isotopic constraints[J].Precambrian Research,2010,180(3/4):272-284.
    [10]LONG X P,YUAN C,SUN M,et al.The discovery of the oldest rocks in the Kuluketage area and its geological implications[J].Science China:Earth Sciences,2011,54(3):342-348.
    [11]HAN C M,XIAO W J,SU B X,et al.Ages and tectonic implications of the mafic-ultramafic-carbonatite intrusive rocks and associated Cu-Ni,Fe-P and apatite-vermiculite deposits from the Quruqtagh district,NW China[J].Ore Geology Review,2016.DOI:org/10.1016/j.oregeorev.2016.07.011.
    [12]XU B,JIAN P,ZHENG H F,et al.U-Pb zircon geochronology and geochemistry of Neoproterozoic volcanic rocks in the Tarim Block of northwest China:implications for the breakup of Rodinia supercontinent and Neoproterozoic glaciations[J].Precambrian Research,2005,136:107-123.
    [13]XU B,XIAO S H,ZOU H B,et al.SHRIMP zircon U-Pb age constraints on Neoproterozoic Quruqtagh diamictites in NW China[J].Precambrian Research,2009,168(3):247-258.
    [14]ZHANG C L,LI X H,LI Z X,et al.Neoproterozoic ultramafic-mafic-carbonatite complex and granitoids in Quruqtagh of northeastern Tarim Block,western China:geochronology,geochemistry and tectonic implications[J].Precambrian Research,2007,152(3/4):149-169.
    [15]ZHANG C L,LI Z X,LI X H,et al.Neoproterozoic mafic dyke swarms at the northern margin of the Tarim Block,NW China:age,geochemistry,petrogenesis and tectonic implications[J].Journal of Asian Earth Sciences,2009,35(2):167-179.
    [16]ZHANG C L,YANG D S,WANG H Y,et al.Neoproterozoic mafic-ultramafic layered intrusion in Quruqtagh of northeastern Tarim Block,NW China:two phases of mafic igneous activity with different mantle sources[J].Gondwana Research,2011,19(1):177-190.
    [17]ZHANG C L,ZOU H B,WANG H Y,et al.Multiple phases of the Neoproterozoic igneous activity in Quruqtagh of the northeastern Tarim Block,NW China:interaction between plate subduction and mantle plume?[J].Precambrian Research,2012,222/223:488-502.
    [18]ZHU W B,ZHANG Z Y,SHU L S,et al.SHRIMP U-Pb zircon geochronology of Neoproterozoic Korla mafic dykes in the northern Tarim Block,NW China:implications for the long-lasting breakup process of Rodinia[J].Journal of the Geological Society,2008,165(5):887-890.
    [19]ZHU W B,ZHENG B H,SHU L S,et al.Geochemistry and SHRIMP U-Pb zircon geochronology of the Korla mafic dykes:constrains on the Neoproterozoic continental breakup in the Tarim Block,Northwest China[J].Journal of Asian Earth Sciences,2011,42(5):791-804.
    [20]CAO X F,GAO X,LV X B,et al.Sm-Nd geochronology and geochemistry of a Neoproterozoic gabbro in the Kuluketage block,north-western China[J].International Geology Review,2012,54(8):861-875.
    [21]CAO X F,LV X B,YUAN Q,et al.Neoproterozoic granitic activities in the Xingdi plutons at the Kuluketage block,NW China:evidence from zircon U-Pb dating,geochemical and Sr-Nd-Hf isotopic analyses[J].Journal of Asian Earth Sciences,2014,96:93-107.
    [22]LONG X P,YUAN C,SUN M,et al.Reworking of the Tarim Craton by underplating of mantle plume-derived magmas:evidence from Neoproterozoic granitoids in the Kuluketage area,NW China[J].Precambrian Research,2011,187(1/2):1-14.
    [23]HE Z Y,ZHANG Z M,ZONG K Q,et al.Neoproterozoic granulites from the northeastern margin of the Tarim Craton:petrology,zircon U-Pb ages and implications for the Rodinia assembly[J].Precambrian Research,2012,212/213:21-33.
    [24]GE R F,ZHU W B,ZHENG B H,et al.Early Pan-African magmatism in the Tarim Craton:insights from zircon U-PbLu-Hf isotope and geochemistry of granitoids in the Korla area,NW China[J].Precambrian Research,2012,212/213(8):117-138.
    [25]YE H M,LI X H,LAN Z W.Geochemical and Sr-Nd-HfO-C isotopic constraints on the origin of the Neoproterozoic Qieganbulake ultramafic-carbonatite complex from the Tarim Block,Northwest China[J].Lithos,2013,182/183:150-164.
    [26]TANG Q Y,ZHANG Z W,LI C S,et al.Neoproterozoic subduction-related basaltic magmatism in the northern margin of the Tarim Craton:implications for Rodinia reconstruction[J].Precambrian Research,2016,286:370-378.
    [27]CHEN H J,CHEN Y J,RIPLEY E M,et al.Isotope and trace element studies of the Xingdi II mafic-ultramafic complex in the northern rim of the Tarim Craton:evidence for emplacement in a Neoproterozoic subduction zone[J].Lithos,2017,278/279/280/281:274-284.
    [28]董昕,张泽明,唐伟.塔里木克拉通北缘的前寒武纪构造热事件:新疆库尔勒铁门关高级变质岩的锆石U-Pb年代学限定[J].岩石学报,2011,27(1):47-58.
    [29]LEI R X,WU C Z,CHI G X,et al.Petrogenesis of the Palaeoproterozoic Xishankou pluton,northern Tarim Block,Northwest China:implications for assembly of the supercontinent Columbia[J].International Geology Review,2012,54(15):1829-1842.
    [30]LONG X P,SUN M,YUAN C,et al.Zircon REE patterns and geochemical characteristics of Paleoproterozoic anatectic granite in the northern Tarim Craton,NW China:implications for the reconstruction of the Columbia supercontinent[J].Precambrian Research,2012,223:474-487.
    [31]吴海林,朱文斌,舒良树,等.Columbia超大陆聚合事件在塔里木克拉通北缘的记录[J].高校地质学报,2012(4):686-700.
    [32]ZHANG C L,ZOU H B,SANTOSH M,et al.Is the Precambrian basement of the Tarim Craton in NW China composed of discrete terranes?[J].Precambrian Research,2014,254:226-244.
    [33]GE R F,ZHU W B,WU H L,et al.Timing and mechanisms of multiple episodes of migmatization in the Korla Complex,northern Tarim Craton,NW China:constraints from zircon U-Pb-Lu-Hf isotopes and implications for crustal growth[J].Precambrian Research,2013,231(5):136-156.
    [34]GE R F,ZHU W B,WU H L,et al.Zircon U-Pb ages and Lu-Hf isotopes of Paleoproterozoic metasedimentary rocks in the Korla Complex,NW China:implications for metamorphic zircon formation and geological evolution of the Tarim Craton[J].Precambrian Research,2013,231:1-18.
    [35]GE R F,ZHU W B,WILDE S A,et al.Synchronous crustal growth and reworking recorded in late Paleoproterozoic granitoids in the northern Tarim Craton:in situ zircon U-Pb-Hf-O isotopic and geochemical constraints and tectonic implications[J].Geological Society of America Bulletin,2015,127(5/6):781-803.
    [36]HE Z Y,ZHANG Z M,ZONG K Q,et al.Paleoproterozoic crustal evolution of the Tarim Craton:constrained by zircon U-Pb and Hf isotopes of meta-igneous rocks from Korla and Dunhuang[J].Journal of Asian Earth Sciences,2013,78(12):54-70.
    [37]YE X T,ZHANG C L,SANTOSH M,et al.Growth and evolution of Precambrian continental crust in the southwestern Tarim terrane:new evidence from the ca.1.4Ga A-type granites and Paleoproterozoic intrusive complex[J].Precambrian Research,2016,275(3):18-34.
    [38]YU S Y,ZHANG J X,ZHAO X L,et al.Geochronology,geochemistry and petrogenesis of the late Palaeoproterozoic A-type granites from the Dunhuang block,SE Tarim Craton,China:implications for the break-up of the Columbia supercontinent[J].Geological Magazine,2014,151(4):629-648.
    [39]王玉玺,王金荣,周小玲,等.Columbia超大陆裂解:来自塔里木克拉通东南缘大红山A型花岗岩的证据[J].地质学报,2017,91(11):2369-2386.
    [40]吴福元,李献华,杨进辉,等.花岗岩成因研究的若干问题[J].岩石学报,2007,23(6):1217-1238.
    [41]张旗,冉皞,李承东.A型花岗岩的实质是什么?[J].岩石矿物学杂志,2012,31(4):621-626.
    [42]WU C Z,SANTOSH M,CHEN Y J,et al.Geochronology and geochemistry of early Mesoproterozoic meta-diabase sills from Quruqtagh in the northeastern Tarim Craton:implications for breakup of the Columbia supercontinent[J].Precambrian Research,2014,241(1):29-43.
    [43]WANG X D,LV X B,CAO X F,et al.Palaeo-Mesoproterozoic magmatic and metamorphic events from the Kuluketage block,northeast Tarim Craton:geochronology,geochemistry and implications for evolution of Columbia[J].Geological Journal,2018,531(1):120-138.
    [44]DEPAOLO D J,DALEY E E.Neodymium isotopes in basalts of the southwest basin and range and lithospheric thinning during continental extension[J].Chemical Geology,2000,169(1):157-185.
    [45]NIU Y L,O’HARA M J.Origin of ocean island basalts:a new perspective from petrology,geochemistry,and mineral physics considerations[J].Journal of Geophysical Research:Solid Earth,2003,108(B4):283-299.
    [46]徐义刚.用玄武岩组成反演中-新生代华北岩石圈的演化[J].地学前缘,2006,13(2):93-104.
    [47]NIU Y L.The origin of alkaline lavas[J].Science,2008,320(5878):883-884.
    [48]董连慧,徐兴旺,赵树铭.新疆库鲁克塔格1.95Ga磁铁石英岩建造(BIF)发现及意义[J].新疆地质,2012,30(4):371-376.
    [49]刘文刚,李国占,刘卉,等.微量萤石样品消解技术及其SmNd同位素高精度热离子质谱法测试[J].地球学报,2018,39(1):119-124.
    [50]COMPSTON W,WILLIAMS I S,KRISCHVINK J L.Zircon U-Pb ages for the Early Cambrian time-scale[J].Journal of the Geological Society of London,1992,149:171-184.
    [51]BLACK L P,KAMO S L,ALLEN C M,et al.TEMORA1:a new zircon standard for Phanerozoic U-Pb geochronology[J].Chemical Geology,2003,200:155-170.
    [52]NASDALA L,HOFMEISTER W,NORBERG N,et al.Zircon M257:a homogeneous natural reference material for the ion microprobe U-Pb analysis of zircon[J].Geostandards and Geoanalytical Research,2008,32(3):247-265.
    [53]LUDWIG K R.Users manual for Isoplot/Ex,version 3.00.A geochronological toolkit for Microsoft Excel[M].Berkeley:Geochronology Center Special Publication,2003:1-70.
    [54]ICKERT R B,HIESS J,WILLIAMS I S,et al.Determining high precision,in situ,oxygen isotope ratios with a SHRIMP II:analyses of MPI-DING silicate-glass reference materials and zircon from contrasting granites[J].Chemical Geology,2008,257(1):114-128.
    [55]WAN Y S,ZHANG Y H,WILLIAMS I S,et al.Extreme zircon O isotopic compositions from 3.8to 2.5Ga magmatic rocks from the Anshan area,North China Craton[J].Chemical Geology,2013,352(5):108-124.
    [56]BLACK L P,KAMO S L,ALLEN C M,et al.Improved 206Pb/238 U microprobe geochronology by the monitoring of a trace-element-related matrix effects:SHRIMP,ID-TIMS,ELA-ICP-MS and oxygen isotope documentation for a series of zircon standards[J].Chemical Geology,2004,205(1/2):115-140.
    [57]耿建珍,李怀坤,张健,等.锆石Hf同位素组成的LA-MC-ICP-MS测定[J].地质通报,2011,30(10):1508-1513.
    [58]吴元保,郑永飞.锆石成因矿物学研究及其对U-Pb年龄解释的制约[J].科学通报,2004,49(16):1589-1604.
    [59]SUN S S,MCDONOUGH W F.Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes[J].Geological Society,London,Special Publication,1989,42:313-345.
    [60]LE BAS M J,LEMAITRE R W,STRECKEISEN A,et al.A chemical classification of volcanic rocks based on the total alkali-silica diagram[J].Journal of Petrology,1986,27(3):745-750.
    [61]JESEN L S.A new cation plot for classifying subalkalic volcanic rocks[J].Ontario Division of Mines Miscellaneous Papper,1976,66:1-22.
    [62]PEARCE J A.Immobile element fingerprinting of ophiolites[J].Elements,2014,10(2):101-108.
    [63]LI C S,ARNDT N T,TANG Q Y,et al.Trace element indiscrimination diagrams[J].Lithos,2015,232:76-83.
    [64]姜常义,卢登蓉,白开寅,等.大陆岩石圈地幔交代作用的产物:且干布拉克蛭石矿床[J].岩石学报,2005,21(1):201-210.
    [65]PATCHETT P J,KOUVO O,HEDGE C E,et al.Evolution of continental crust and mantle heterogeneity:evidence from Hf isotopes[J].Contributions to Mineralogy and Petrology,1982,78(3):79-297.
    [66]吴福元,李献华,郑永飞,等.Lu-Hf同位素体系及其岩石学应用[J].岩石学报,2007,23(2):185-220.
    [67]VERVOORT J D,PATCHETT P J,BLICHERT-TOFT J,et al.Relationships between Lu-Hf and Sm-Nd isotopic systems in the global sedimentary system[J].Earth and Planetary Science Letters,1999,168(1):79-99.
    [68]VALLEY J W,CHIARENZELLI J R,MCLELLAND J M.Oxygen isotope geochemistry of zircon[J].Earth and Planetary Science Letters,1994,126(4):87-206.
    [69]郑永飞.化学地球动力学[M].北京:科学出版社,1999:62-118.
    [70]WOOD D A.A variably veined suboceanic upper mantle-genetic significance for mid-ocean ridge basalts from geochemical evidence[J].Geology,1979,7(10):499-503.
    [71]POLAT A,HOFMANN A W,ROSING M T.Boninite-like volcanic rocks in the 3.7-3.8Ga Isua greenstone belt,West Greenland:geochemical evidence for intra-oceanic subduction zone processes in the early Earth[J].Chemical Geology,2002,184(3):231-254.
    [72]邢长明,王焰,张传林.塔里木大火成岩省皮羌层状岩体的矿物结晶顺序和钒钛磁铁矿矿石成因探讨[J].地学前缘,2013,20(4):285-298.
    [73]XIA L Q.The geochemical criteria to distinguish continental basalts from arc related ones[J].Earth-Science Reviews,2014,139:195-212.
    [74]MORGAN W J.Convection plumes in the lower mantle[J].Nature,1971,230(5288):42-43.
    [75]GRIFFITHS R W,CAMPBELL I H.Stirring and structure in mantle starting plumes[J].Earth and Planetary Science Letters,1990,99(1/2):66-78.
    [76]徐义刚.地幔柱构造、大火成岩省及其地质效应[J].地学前缘,2002,9(4):341-353.
    [77]ZHENG Y F,CHEN Y X,DAI L Q,et al.Developing plate tectonics theory from oceanic subduction zones to collisional orogens[J].Science China:Earth Sciences,2015,58(7):1045-1069.
    [78]CAMPBELL I H.Large igneous provinces and the mantle plume hypothesis[J].Elements,2005,1(5):265-269.
    [79]ERNST R E,BUCHAN K L,CAMPBELL I H.Frontiers in large igneous province research[J].Lithos,2005,79(3/4):271-297.
    [80]SAUNDERS A D,JONES S M,MORGAN L A,et al.Regional uplift associated with continental large igneous provinces:the roles of mantle plumes and the lithosphere[J].Chemical Geology,2007,241(3/4):282-318.
    [81]BRYAN S E,ERNST R E.Revised definition of large igneous provinces(LIPs)[J].Earth-Science Reviews,2008,86(1):175-202.
    [82]ERNST R E.Large Igneous Provinces[M].Cambridge:Cambridge University Press,2014:1-39.
    [83]XU Y G,CHUNG S L,JAHN B M,et al.Petrologic and geochemical constraints on the petrogenesis of Permian-Triassic Emeishan flood basalts in southwestern China[J].Lithos,2001,58(3):145-168.
    [84]TURNER S,HAWKESWORTH C,GALLAGHER K,et al.Mantle plumes,flood basalts,and thermal models for melt generation beneath continents:assessment of a conductive heating model and application to the paraná[J].Journal of Geophysical Research:Solid Earth,1996,101(B5):11503-11518.
    [85]徐义刚,王焰,位荀,等.与地幔柱有关的成矿作用及其主控因素[J].岩石学报,2013,29(10):3307-3322.
    [86]LACKEY J S,VALLEY J W,SALEEBY J B.Supracrustal input to magmas in the deep crust of Sierra Nevada batholith:evidence from high-δ18 O zircon[J].Earth and Planetary Science Letters,2005,235(1):315-330.
    [87]RUDNICK R L,FOUNTAIN D M.Nature and composition of the continental crust:a lower crustal perspective[J].Reviews of Geophysics,1995,33(3):267-309.
    [88]GREENOUGH J D,KYSER T K.Contrasting Archean and Proterozoic lithospheric mantle:isotopic evidence from the Shonkin Sag sill(Montana)[J].Contributions to Mineralogy and Petrology,2003,145(2):169-181.
    [89]GREENOUGH J D,KAMO S L,THENY L,et al.Highprecision U-Pb age and geochemistry of the mineralized(NiCu-Co)Suwar intrusion,Yemen[J].Canadian Journal of Earth Sciences,2011,48(2):495-514.
    [90]NOLL JR P D,NEWSOM H E,LEEMAN W P,et al.The role of hydrothermal fluids in the production of subduction zone magmas:evidence from siderophile and chalcophile trace elements and boron[J].Geochimica et Cosmochimica Acta,1996,60(4):587-611.
    [91]JOHNSON M C,PLANK T.Dehydration and melting experiments constrain the fate of subducted sediments[J].Geochemistry Geophysics Geosystems,1999,1:1-26.
    [92]GAO S,RUDNICK R L,XU W L,et al.Recycling deep cratonic lithosphere and generation of intraplate magmatism in the North China Craton[J].Earth and Planetary Science Letters,2008,270(1/2):41-53.
    [93]ZHANG H F,GOLDSTEIN S L,ZHOU X H,et al.Evolution of subcontinental lithospheric mantle beneath eastern China:Re-Os isotopic evidence from mantle xenoliths in Paleozoic kimberlites and Mesozoic basalts[J].Contributions to Mineralogy and Petrology,2008,155(3):271-293.
    [94]JAHN B M,WU F Y,LO C H,et al.Crust-mantle interaction induced by deep subduction of the continental crust:geochemical and Sr-Nd isotopic evidence from post-collisional mafic-ultramafic intrusions of the northern Dabie complex,central China[J].Chemical Geology,1999,157(2/3):119-146.
    [95]MESCHEDE M.A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram[J].Chemical Geology,1986,56(3):207-218.
    [96]CABANIS B,LECOLLE M.Le diagramme La/10-Y/15-Nb/8:un outilpour la discrimination des séries volcaniques et la mise enévidence des processus de mélange et/ou de contamination crustale[J].Comptes Rendus de lAcadémie des Sciences:SérieⅡ,1989,309:2023-2029.
    [97]ZHAO G C,SUN M,WILDE S A,et al.A Paleo-Mesoproterozoic supercontinent:assembly,growth and breakup[J].Earth-Science Reviews,2004,67(1):91-123.
    [98]EVANS D A D,MITCHELL R N.Assembly and breakup of the core of Paleoproterozoic-Mesoproterozoic supercontinent Nuna[J].Geology,2011,9(5):443-446.
    [99]CAWOOD P A,HAWKESWORTH C J.Earths middle age[J].Geology,2014,42:503-506.
    [100]HOU G T,LIU Y L,LI J H.Evidence for~1.8Ga extension of the Eastern Block of the North China Craton from SHRIMP U-Pb dating of mafic dyke swarms in Shandong Province[J].Journal of Asian Earth Sciences,2006,27(4):392-401.
    [101]PENG P.Precambrian mafic dyke swarms in the North China Craton and their geological implications[J].Science China:Earth Sciences,2015,58(5):649-675.
    [102]ROGERS J J W,SANTOSH M.Configuration of Columbia,a Mesoproterozoic supercontinent[J].Gondwana Research,2002,5(1):5-22.
    [103]ERNST R E,WINGATE M T D,BUCHAN K L,et al.Global record of 1600-700 Ma Large Igneous Provinces(LIPs):implications for the reconstruction of the proposed Nuna(Columbia)and Rodinia supercontinents[J].Precambrian Research,2008,160:159-178.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700