用户名: 密码: 验证码:
入口流量分配对超紧凑级间燃烧室性能的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Performance of ultra-compact inter-turbine burner with different inlet mass flow splits
  • 作者:彭瀚 ; 黄玥 ; 邢菲 ; 刘晨 ; 林志伟
  • 英文作者:PENG Han;HUANG Yue;XING Fei;LIU Chen;LIN Zhi-wei;School of Aerospace Engineering,Xiamen University;
  • 关键词:超紧凑燃烧室 ; 级间燃烧室 ; 分流比 ; 燃烧室性能 ; 排放指数
  • 英文关键词:ultra-compact combustor;;inter-turbine burner;;mass flow split ratio;;combustor performance;;emission index
  • 中文刊名:HKDI
  • 英文刊名:Journal of Aerospace Power
  • 机构:厦门大学航空航天学院;
  • 出版日期:2017-01-19 10:49
  • 出版单位:航空动力学报
  • 年:2017
  • 期:v.32
  • 基金:国家自然科学基金(51406171);; 福建省自然科学基金(2015J05111);; 中央高校基本科研业务费项目(20720150094)
  • 语种:中文;
  • 页:HKDI201701008
  • 页数:6
  • CN:01
  • ISSN:11-2297/V
  • 分类号:66-71
摘要
超紧凑级间燃烧室入口的流量分配进行了优化分析.首先基于化学反应模拟软件Chemkin,建立了航空煤油RP3/空气的小型级间燃烧室性能简化分析方法,并利用现有实验数据对其进行了验证.选取了入口主流流量/腔体流量分别为60/40,65/35,70/30,75/25,80/20五种分配方案,利用简化分析模型对各分流方案进行了对比研究,主要关注出口温度、燃烧效率和污染物排放的变化情况.结果表明:分流比为65/35时,燃烧效率相对于5种分流比中最高燃烧效率只下降0.249%,但NOx及CO排放均相对降低了50%以上.基于此研究方法得到的结论,可为超紧凑级间燃烧室设计初期的分流方案选取提供依据和性能简化分析方法.
        An optimization analysis of inlet mass flow splits of ultra-compact inter-turbine burner was introduced.The combustion performance in a small-scale inter-turbine burner was numerically analyzed using Chemkin software,and a detail kerosene RP-3/air mechanism was used.Numerical results were qualitatively validated with the existing experimental data with respect to the combustion performance.Five split ratios of the core mass flow rate to cavity mass flow rate,60/40,65/35,70/30,75/25 and 80/20,were adopted to contrastively study the outlet temperature,combustion efficiency and pollutant emission using the simplified model.The results show that the combustion efficiency of the split ratio 65/35 decreasesd by 0.249%compared with the highest efficiency among the five split ratios,but the NOx and CO emissions both decrease more than 50%.The conclusion based on this method can provide a basis for evaluating an optimum mass flow split at the design stage of ultracompact inter-turbine burner as well as for simplified performance analysis.
引文
[1]毛艳辉.航空燃气轮机涡轮级间燃烧技术研究[D].北京:中国科学院,2013.MAO Yanhui.Aero-engine interstage turbine burner technology[D].Beijing:Chinese Academy of Sciences,2013.(in Chinese)
    [2]Conrad M M.Integration issues of an ultra-compact combustor to a jet turbine engine[R].AIAA-2013-3711,2013.
    [3]Mattingly J D.Aircraft engine design[M].Reston,US:AIAA,2002.
    [4]张荣春,樊未军,邢菲.环形级间驻涡燃烧室壁温分布试验[J].航空动力学报,2010,25(6):1238-1244.ZHANG Rongchun,FAN Weijun,XING Fei.Experimental study of wall temperature distribution on annular interstage trapped vortex combustor[J].Journal of Aerospace Power,2010,25(6):1238-1244.(in Chinese)
    [5]邢菲,张荣春,樊未军,等.主流及掺混气温度对单涡/贫油驻涡燃烧室点火及熄火性能影响的试验[J].航空动力学报,2008,23(12):2280-2285.XING Fei,ZHANG Rongchun,FAN Weijun,et al.Experiment study on single/fuel-lean rapped vortex combustor ignition and limit blow-out at different main air and mix air temperatures[J].Journal of Aerospace Power,2008,23(12):2280-2285.(in Chinese)
    [6]Erdmann T,Blunck D,Shouse D,et al.Rayleigh pressure loss analysis and mitigation in ultra-compact combustors[R].AIAA-2013-0873,2013.
    [7]Sekar B.Effect of trapped vortex combustion with radial vane cavity arrangements on predicted inter-turbine burner performance[R].AIAA-2009-4603,2009.
    [8]Bohan B T,Polanka M D.Analysis of flow migration in an ultra compact combustor[J].Journal of Engineering for Gas Turbines and Power,2011,135(5):420-431.
    [9]Zelina J,Shouse D T,Stutrud J S,et al.Exploration of compact combustors for reheat cycle aero engine applications[R].ASME Paper GT2006-90179,2006.
    [10]Lebay K D,Polanka M D,Branam R D,et al.Characterizing the effect of radial vane height on flame migration in an ultra compact combustor[C]∥ASME Turbo Expo2011:Turbine Technical Conference and Exposition.Vancouver,US:American Society of Mechanical Engineers,2011:1903-1914.
    [11]Thomas L M,Branam R D,Reeder M F.Flow measurements using particle image velocimetry in the ultra compact combustor[R].AIAA-2010-6948,2010.
    [12]Kostka S.Experimental study of laminar and turbulent flame stabilization using laser diagnostics[D].Connecticut,US:University of Connecticut,2009.
    [13]Spytek C J.Application of an inter-turbine burner using core driven vitiated air in a gas turbine engine[R].ASME Paper GT2012-69333,2012.
    [14]XU Jiaqi,GUO Junjiang,LIU Aike,et al.Construction of autoignition mechanisms for the combustion of RP-3surrogate fuel and kinetics simulation[J].Acta Physico-Chimica Sinica,2015,31(4):643-652.
    [15]Wiliams F A.Sandiego NOx CK-2004-12-09.txt[EB/OL].[2015-8-20].http:∥web.eng.ucsd.edu/mae/groups/combustion/mechanism.html.
    [16]XING Fei,ZHANG Shuai,WANG Peiyong,et al.Experimental investigation of a single trapped-vortex combustor with a slight temperature raise[J].Aerospace Science and Technology,2010,14(7):520-525.
    [17]中国人民共和国航空工业部.HB 6117-87航空燃气涡轮发动机气态污染物的连续取样及测量程序规范[S].北京:中华人民共和国航空工业部,1987.
    [18]Zhang R C,Fan W J,Shi Q,et al.Combustion and emissions characteristics of dual-channel double-vortex combustion for gas turbine engines[J].Applied Energy,2014,130(5):314-325.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700