用户名: 密码: 验证码:
超级贝氏体对1.37wt.%C超高碳钢强度和韧性的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of superbainite on the strength and toughness of ultrahigh-carbon steel with 1.37wt.%C
  • 作者:刘宏基 ; 宋兆焕 ; 张喜亮 ; 谢海龙 ; 郑立允 ; 柳永宁 ; 赵树国
  • 英文作者:LIU Hongji;SONG Zhaohuan;ZHANG XiLiang;XIE Hailong;ZHENG Liyun;LIU Yongning;ZHAO Shuguo;School of Materials Science and Engineering,Hebei University of Engeering;State Key Laboratory for Mechanical Behavior of Materials,Xi'an Jiaotong University;Handan Polytechnic College;
  • 关键词:超高碳钢 ; 超级贝氏体 ; 强度 ; 韧性
  • 英文关键词:ultrahigh-carbon steel;;superbainite;;strength;;toughness
  • 中文刊名:HJXU
  • 英文刊名:Journal of Hebei University of Engineering(Natural Science Edition)
  • 机构:河北工程大学材料科学与工程学院;西安交通大学金属材料强度国家重点实验室;邯郸职业技术学院;
  • 出版日期:2018-09-25
  • 出版单位:河北工程大学学报(自然科学版)
  • 年:2018
  • 期:v.35;No.122
  • 基金:国家自然科学基金资助项目(51701059);; 西安交通大学金属材料强度国家重点实验室开放研究项目(20171908)
  • 语种:中文;
  • 页:HJXU201803018
  • 页数:7
  • CN:03
  • ISSN:13-1375/N
  • 分类号:92-98
摘要
研究1.37%C(质量分数)超高碳钢(UHCS-1.37C)经990℃奥氏体化,270℃和310℃等温淬火不同时间后空冷的组织和力学性能。组织研究表明,UHCS-1.37C经等温淬火热处理后获得了由纳米级贝氏体铁素体+薄膜状残余奥氏体组成的超级贝氏体组织。在同一等温温度下,随着等温时间的延长,超级贝氏体的数量不断增加,马氏体数量减少;在相同的等温时间内,等温温度越高,生成的超级贝氏体数量越多。力学测试结果表明,UHCS-1.37C在310℃等温8 h后获得了最佳的强韧性配合,其抗拉强度为1 622 MPa,断后伸长率为5.5%,冲击吸收能量为12.7 J。UHCS-1.37C等温组织优异的力学性能归因于超级贝氏体组织。
        The microstructures and mechanical properties of an ultrahigh-carbon steel with 1.37 wt.%C subjected to austenitization at single γ phase region and austempering at low temperatures have been studied. The results show that a superbainite comprising lamar bainite ferrite and film-type retained austenite is generated. An impact absorbed energy of 12.7 J,a fraction strength of 1 622 MPa and an elongation of 5.5% are obtained for UHCS-1.37 C austempered at 310℃ for 8 h. The combination of excellent strength and toughness is attributed to the superbainite.
引文
[1]SHERBYOD,CADYJEM,WALSERB,etal.Superplastic Ultra-high Carbon Steel,Superplastic Ultrahigh Carbon Steel:U.S,552,245[P].1976.
    [2]OYAMA T,SHERBY O D,KUM D W,et al. Ultrahigh Carbon Steels[J].Journal of Metals,1985,37(6):50-56.
    [3]Z. Jiewu,X. Yan,Y. Liu. Lath martensite in 1.4%C ultrahigh carbon steel and its grain size effect[J].Materials Science and Engineering:A,2004,385(1-2):440-444.
    [4]OYAMA T,SHERBY O D. Ultra high carbon steel alloy and processing thereof:United States,4533390[P].1985-08-06.
    [5]OYAMA T,SHERBY O D,WADSWORTH J. Divorced eutectoid transformation process and product of ultrahigh carbon steels:United States,4448613[P].1984-05-15.
    [6]KAYALIES,SUNADAH,OYAMAT,etal.The developmentoffinestructuresuperplasticityincast ultrahigh carbon steels through thermal cycling[J]. Journal Of Materials Science,1979,14(11):2688-2692.
    [7]LUOGM,WUJS,FANJF,etal.Excellent mechanicalpropertiesofaspraydepositedultrahigh carbonsteelafterhotrolling[J].JournalofMaterials Science,2004,39(14):4679-4681.
    [8]刘宏基,孙俊杰,江涛,等.一种超高碳钢的滚动接触疲劳研究[J].金属学报,2014(12):1446-1452.
    [9]CHEN X,LIU Y,ZHU J,et al. Tribological Behavior of 1.41 wt%C Ultrahigh-carbon Steel With Quenching and Low-temperature Tempering Treatment[J]. Tribology Letters,2010:38(1):79-86.
    [10]WANG YH,ZHANGFC,WANGTS. Anovel bainitic steel comparable to maraging steel in mechanical properties[J]. Scripta Materialia,2013,68(9):763-766.
    [11]JIANG T,LIU H, SUN J,et al. Effect of Austenite GrainSizeonTransformationofNanobainiteand ItsMechanicalProperties[J].MaterialsScience&Engineering,2016,A 666:207-213.
    [12]ZHAO J,ZHAO T,HOU C S,et al. Improving impact toughness of high-C–Cr bearing steel by Si–Mo alloying and low-temperature austempering[J]. Materials&Design,2015,86:215–220.
    [13]ZHANG Z,ZHANG K,YUE Y,et al. Microstructure andMechanicalPropertiesof AustemperedUltrahigh CarbonSteel1.4%C[J].MaterialsScienceForum,2011,682:97-101.
    [14]石淑琴,陈光,傅万堂,等.Fe-1.5C-1.5Cr-2.0Al超高碳钢的等温组织及力学性能[J].天津大学学报,2007,40(5):629-633.
    [15]DURNIN J,RIDAL K. Quantitative-determination of retained austenite in steel by X-ray diffraction[J]. J Iron Steel Inst,1968,206(1):60-67.
    [16]DYSON D,HOLMES B. Effect of alloying additions on the lattice parameter of austenite[J]. J Iron Steel Inst,1970,208(5):469-474.
    [17]CABALLERO F G,MILLER M K,GARCIA-MATEO C. Carbon supersaturation of ferrite in a nanocrystalline bainitic steel[J]. Acta Materialia,2010,58(7):2338-2343.
    [18]CORNIDEJ,GARCIA-MATEO C,CAPDEVILA C,et al. An assessment of the contributing factors to the nanoscale structural refinement of advanced bainitic steels[J]. Journal of Alloys and Compounds,2013,577:S43-S47.
    [19]BHADESHIA H. Nanostructured bainite,Proceedings of the Royal Society A:Mathematical[J]. Physical and Engineering Science,2009:20090407.
    [20]XUG,LIUF,WANGL,etal. Anewapproachto quantitativeanalysisofbainitictransformationina superbainite steel[J]. Scripta Materialia,2013,68(11):833-836.
    [21]SEOLJB,RAABED,CHOIPP,etal. Atomic scale effects of alloying,partitioning,solute drag and austempering on the mechanical properties of high-carbon bainitic–austenitic TRIPsteels[J]. ActaMaterialia,2012,60(17):6183-6199.
    [22]CABALLERO F G,BHADESHIA H K D H. Very strong bainite[J]. Current Opinion in Solid State and Materials Science,2004,8(3–4):251-257.
    [23]BHADESHIA H K D H,CHRISTIAN J W. Bainite in steels[J]. Metallurgical Transactions,1990,A 21(3):767-797.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700