用户名: 密码: 验证码:
GB/T 34019—2017《超高压容器》标准分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Technical Progress in GB/T 34019—2017 Standard “Ultrahigh Pressure Vessel”
  • 作者:陈志伟 ; 李涛 ; 杨国义 ; 郑津洋
  • 英文作者:Chen Zhiwei;Li Tao;Yang Guoyi;Zheng Jinyang;China Standardization Committee on Boilers and Pressure Vessels;Zhejiang University;
  • 关键词:超高压容器 ; 国家标准 ; 设计理念 ; 无损检测
  • 英文关键词:ultrahigh pressure vessel;;national standard;;design concept;;nondestructive testing
  • 中文刊名:YLRQ
  • 英文刊名:Pressure Vessel Technology
  • 机构:全国锅炉压力容器标准化技术委员会;浙江大学;
  • 出版日期:2019-04-30
  • 出版单位:压力容器
  • 年:2019
  • 期:v.36;No.317
  • 基金:质检公益性行业科研专项项目(201210242)
  • 语种:中文;
  • 页:YLRQ201904007
  • 页数:6
  • CN:04
  • ISSN:34-1058/TH
  • 分类号:49-54
摘要
GB/T 34019—2017《超高压容器》的颁布填补了我国承压设备标准体系中一直缺乏针对超高压容器标准的空白。该标准适用于设计压力大于或等于100 MPa的压力容器。就该标准制定的必要性、适用范围、设计理念、设计准则、材料要求和无损检测等进行了说明和分析,并指出了今后研究的重点。
        The promulgation of GB/T 34019—2017 "Ultra-high Pressure Vessel" filled the blank always with respect to ultrahigh pressure vessels in Chinese national standard system for pressure equipment. This standard applies to pressure vessels whose design pressure is greater than or equal to 100 MPa. This paper mainly introduces the necessity for preparing this standard,scope of application,design concept,design criteria,material requirements and NDT,etc. and makes analysis,and points out the key points of future research.
引文
[1]郑津洋,朱国辉,黄载生.超高压容器的典型事故案例和对策分析[J].压力容器,1991,8(4):52-56.
    [2]周谧,林铁军,周健.厚壁圆筒自增强理论与数值模拟对比分析[J].压力容器,2017,34(6):14-18.
    [3]钟玉平,李张治,段玫,等.外压-拉伸位移下波纹管周向应力计算探讨[J].压力容器,2018,35(10):25-30.
    [4]中华人民共和国劳动部.超高压容器安全监察规程(试行)[S].北京:中国锅炉压力容器安全杂志社,1993.
    [5]国家质量监督检验检疫总局.固定式压力容器安全技术监察规程:TSG 21-2016[S].北京:新华出版社.
    [6]黄载生.《超高压容器安全监察规程》编制的说明[J].压力容器,1995,12(1):1-4.
    [7]郑津洋,黄载生.《超高压容器安全监察规程》若干问题分析(一)[J].化工装备技术,1994,15(5):27-32.
    [8]郑津洋,黄载生,徐平.超高压容器疲劳强度研究进展(一)[J].化工装备技术,1994,15(2):32-34.
    [9]鵜戸口英善.超高圧設備に関する基準(案)について[J].高圧ガス,1989,26(3):183-193.
    [10]超高压圆筒容器设计指针:HPIS C-103-1989[S].
    [11]Rules for Construction of High Pressure Vessels:HPISC-106-2013[S].
    [12]Alternative Rules for Construction of High Pressure Vessels:ASMEⅧ-3-2017[S].
    [13]Dixon R D,Perez E H.Comparison between linearelastic and limit analysis methods for the design of high pressure vessels[C]//American Society of Mechanical Engineers,Pressure Vessels and Piping Division(Publication).1997,344:43-9.
    [14]Unfired Pressure Vessels:EN 13445-2014[S].
    [15]ASME PTB-1 ASME SectionⅧ-Division 2 Criteria and Commentary[S].2014.
    [16]Zeman J L,Rauscher F,Schindler S.Pressure Vessel Design:The Direct Route[M].Elsevier Science,2006.
    [17]Burns D J,Karl E,Liljeblad J.Methods for predicting the fatigue performance of vessels intended for operation in the pressure range 70 to 1400 MPa[J].ASMEPVP,1985,98(8):213-223.
    [18]Morrison J L M,Crossland B,Parry J S C.Strength of thick cylinders subjected to repeated internal pressure[J].Proceedings of the Institution of Mechanical Engineers,1960,174(1):95-117.
    [19]Parry J S C.Fatigue of thick cylinders:further practical information[J].Proceedings of the Institution of Mechanical Engineers,1965,180(1):387-416.
    [20]Brabin T A,Christopher T,Rao B N.Bursting pressure of mild steel cylindrical vessels[J].International Journal of Pressure Vessels and Piping,2011,88(2-3):119-122.
    [21]Haslam G H.Fatigue limit of cylinders subjected to repeated internal pressures[J].High TemperaturesHigh Pressures,1969,1(6):705-709.
    [22]Davidson T E,Eisenstadt R,Reiner A N.Fatigue characteristics of open-end thick-walled cylinders under cyclic internal pressure[J].Journal of Basic Engineering,1963,85(4):555-565.
    [23]Austin B A,Reiner A N,Davidson T E.Low cycle fatigue strength of thick-walled pressure vessels.proceedings of the institution of mechanical engineers[C]//Conference Proceedings:SAGE Publications,1967:91-105.
    [24]Troiano E,Underwood J H,Parker A P,et al.Postautofrettage thermal treatment and its effect on reyielding of high strength pressure vessel steels[J].Journal of Pressure Vessel Technology,2010,132(6):061402.
    [25]Xu S X,Scarth D A,Cipolla R C.Technical basis for proposed weight function method for calculation of stress intensity factor for surface flaws in ASME sectionⅪappendix A[C]//ASME 2011 Pressure Vessels and Piping Conference.American Society of Mechanical Engineers,2011:85-99.
    [26]Zheng X J,Kiciak A,Glinka G.Weight functions and stress intensity factors for internal surface semi-elliptical crack in thick-walled cylinder[J].Engineering Fracture Mechanics,1997,58(3):207-221.
    [27]Glinka G.Weight functions and stress intensity factors for longitudinal semi-elliptical cracks in thick-wall cylinders[J].Journal of Pressure Vessel Technology,1995,117(4):383-389.
    [28]Desjardins J L,Burns D J,Thompson J C.A weight function technique for estimating stress intensity factors for cracks in high pressure vessels[J].Journal of Pressure Vessel Technology,1991,113(1):10-21.
    [29]Paris P,Erdogan F.A critical analysis of crack propagation laws[J].Journal of Basic Engineering,1963,85(4):528-533.
    [30]Langer B F.Design of pressure vessels for low-cycle fatigue[J].Journal of Basic Engineering,1962,84(3):389-399.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700