用户名: 密码: 验证码:
风沙环境中公路风沙灾害的数值模拟
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical Simulation of Sand Transport around the Highway in Sandy Desert Area
  • 作者:谢虎雄 ; 马发跃 ; 武生智
  • 英文作者:Xie Huxiong;Ma Fayue;Wu Shengzhi;4~(th) Engineering Co.Ltd of China Railway 21st Bureau Group;Ministry of Education Key Laboratory of Mechanics on Disaster and Environment in Western China/School of Civil Engineering and Mechanics,Lanzhou University;
  • 关键词:沙漠公路 ; 风沙运动 ; 挡风墙 ; 离散相模型 ; 计算流体动力学
  • 英文关键词:desert highway;;wind-blown sand movement;;retaining wall;;discrete particle model;;computational fluid dynamics
  • 中文刊名:ZGSS
  • 英文刊名:Journal of Desert Research
  • 机构:中铁二十一局集团有限公司第四工程有限公司;兰州大学西部灾害与环境力学教育部重点实验室/土木工程与力学学院;
  • 出版日期:2019-03-15
  • 出版单位:中国沙漠
  • 年:2019
  • 期:v.39
  • 基金:国家自然科学基金项目(11472121)
  • 语种:中文;
  • 页:ZGSS201902018
  • 页数:7
  • CN:02
  • ISSN:62-1070/P
  • 分类号:154-160
摘要
为揭示沙漠公路两侧风沙流场的空间分布特性,采用欧拉-拉格朗日方法,把气流作为连续介质,把沙粒作为离散体系,利用ANSYS标准k-ε湍流模型和DPM离散相模型,模拟了不同沙粒粒径(150、200、250、300、350μm)、不同摩阻风速(0.20、0.35、0.50、0.65、0.80 m·s~(-1))、不同挡风墙高度(1.0、1.5、2.0、2.5、3.0 m)以及不同挡风墙开孔情况下的公路路基附近的沙粒跃移运动,统计了挡风墙前后的沙粒数目,给出了公路路基坡脚和坡顶等典型断面上的气流速度廓线。结果表明:气流通过挡风墙顶部时受压加速,有利于沙粒的输送,而在挡风墙前部气流遇阻减速,形成沙粒堆积。随着沙粒粒径的变大,沙粒跃过挡风墙的能力逐渐变低;随着摩阻风速的变大,气流输运能力增强,更多沙粒越过挡风墙;随着挡风墙高度的增加,阻挡沙粒数亦逐渐增多;挡风墙开孔的位置和大小亦影响着沙粒的运动。这表明离散相模型对复杂下垫面风沙跃移运动的计算具有良好的效果。
        The objective of this study is to identify and describe wind-blown sand motion near and around the highway in sandy desert areas. The Euler-Lagrange approach was used to describe a coupled gas-solid two-phase flow. The air flow was treated as a continuous phase flow by solving the time-averaged Navier-Stokes equations,while the discrete sand particle motion was calculated based on the mean continuous flow field. We conducted a series of numerical simulations with different parameters by using ANSYS k-ε model and Discrete Particle Model. The sand particle diameters range from 150 μm,to 200 μm,250 μm,300 μm,350 μm,the friction velocity of air flow are from 0.20 m·s~(-1),to 0.35 m·s~(-1),0.50 m·s~(-1),0.65 m·s~(-1),0.80 m·s~(-1),the height of retaining wall are from 1.0 m,to 1.5 m,2.0 m,2.5 m,to 3.0 m,and a variety of retaining walls with different openings are considered as well. The sand particles passing the retaining wall were counted statistically,the typical wind velocity profiles were depicted in this paper. The numerical results show that the flow speeds up at the top of the retaining wall,which is positive to transport of particles,while the flow slows down in the front of the retaining wall and between the wall and the roadbed,which leads to the sand deposition near these zones. As the sand particle becomes larger,the ability of sand particles over the retaining wall becomes lower; with the friction velocity being larger,block effect of windbreak of sand decreases; and with increasing of the retaining wall height,the sand amount over the wall will reduce; meanwhile,the opening position and size of the retaining wall play an important role on the sand movement near the highway. It is concluded that the discrete particle model is useful to the calculation of sand saltation in air,and can provide some theoretical support for the control of windblown sand and for the safe running and operation of highway in sandy desert areas.
引文
[1]吴正,等.风沙地貌与治沙工程学[M].北京:科学出版社,2010.
    [2]新疆交通科学研究院.JTG\TD31-2008沙漠地区公路设计与施工指南[S].北京:人民交通出版社,2008.
    [3]雷加强,王雪芹,王德.塔里木沙漠公路风沙危害形成研究[J].干旱区研究,2003,20(1):1-6.
    [4]王训明,陈广庭,韩致文,等.塔里木沙漠公路机械防沙体系效益分析[J].中国沙漠,1999,19(2):120-127.
    [5]李凯崇,刘贺业,蒋富强,等.斜插板挡沙墙风沙防治现场试验研究[J].中国铁道科学,2013,34(2):46-51.
    [6]Wilson J D.A field study of the mean pressure about a windbreak[J].Boundary-Layer Meteorology,1997,85:327-358.
    [7]尤全刚,薛娴,王涛,等.戈壁地区公路防沙措施防沙效应的风洞试验[J].中国沙漠,2011,31(1):550-556.
    [8]Jin C N,Dong Z B,Li Z N.Construction techniques for the Taklamakan desert highway:research on the construction materials and the results of field tests[J].Environmental Geology,2006,49(6):915-922.
    [9]武生智,刘楠,薄天利.沙漠公路近壁流场的风洞实验和数值模拟[J].兰州大学学报(自然科学版),2008,44(4):27-34.
    [10]郑晓静,马高生,黄宁.铁路挡风墙挡风效果和积沙情况分析[J].中国沙漠,2011,31(1):22-27.
    [11]Hong Se-Woon,Lee In-Bok,Seo Il-Hwan.Modelling and predicting wind velocity patterns for windbreak fence design[J].Journal of Wind Engineering and Industrial Aerodynamics,2015,142:53-64.
    [12]曹太平,李晓军.基于FLUENT的挡沙墙挡沙机理数值模拟研究[J].兰州工业学院学报,2016,23(1):21-24.
    [13]石龙,蒋富强.斜插板挡沙墙设计参数优化数值模拟[J].中国沙漠,2014,34(3):666-673.
    [14]刘贤万.实验风沙物理与风沙工程学[M].北京:科学出版社,1995.
    [15]Owen P R.Saltation of uniform grains in air[J].Journal of Fluid Mechanics,1964,20(2):225-242.
    [16]Ungar J E,Haff P K.Steady-state saltation in air[J].Sedimentology,1987,34(2):289-299.
    [17]White B R.Schultz J C.Magnus effect in saltation[J].Journal of Fluid Mechanics,1977,81(3):497-512.
    [18]Zheng X J,Huang N,Zhou Y H.The effect of electrostatic force on the evolution of sand saltation cloud[J].The European Physical Journal E,2006,19:129-138.
    [19]Anderson R S.Eolian sediment transport as stochastic process:the effects of a fluctuating wind on particle trajectories[J].Journal of Geology,1987,95:497-512.
    [20]郑晓静,王萍.风沙流中沙粒随机运动的数值模拟研究[J].中国沙漠,2006,26(2):184-188.
    [21]Kok J F,Renno N O.A comprehensive numerical model of steady state saltation(COMSALT)[J].Journal of Geophysical Research,2009,114:D17204.
    [22]Namikas S L.Field measurement and numerical modelling of aeolian mass flux distributions on a sandy beach[J].Sedimentology,2003,50(2):303-326.
    [23]Fluent Inc.Fluent 6.3 User’s Guide[Z].Lebanon,NH,USA:Fluent Inc.
    [24]Huang N,Xia X P,Tong D.Numerical simulation of wind sand movement in straw checkerboard barriers[J].The European Physical Journal E,2013,36:99-106.
    [25]Anderson R S,Santa Cruz,Haff P K.Wind modification and bed response during saltation of sand in air[J].Acta Mechanica,1991,1(Suppl):21-51.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700