用户名: 密码: 验证码:
车轮90°冲击试验的仿真分析和多目标优化设计
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Simulation analysis and multi-objective optimization design of wheel based 90° impact test
  • 作者:王登峰 ; 许文超 ; 张帅
  • 英文作者:WANG Deng-feng;XU Wen-chao;ZHANG Shuai;State Key Laboratory of Automotive Simulation and Control,Jilin University;College of Vehicle and Transportation Engineering,Henan University of Science and Technology;
  • 关键词:车辆工程 ; 组装式车轮 ; 90°冲击性能 ; 参数化建模 ; 多目标优化
  • 英文关键词:vehicle engineering;;assembled wheel;;90° impact performance;;parametric modeling;;multi-objective optimization
  • 中文刊名:JLGY
  • 英文刊名:Journal of Jilin University(Engineering and Technology Edition)
  • 机构:吉林大学汽车仿真与控制国家重点实验室;河南科技大学车辆与交通工程学院;
  • 出版日期:2018-06-08 09:38
  • 出版单位:吉林大学学报(工学版)
  • 年:2019
  • 期:v.49;No.201
  • 基金:国家自然科学基金项目(51475201)
  • 语种:中文;
  • 页:JLGY201901001
  • 页数:13
  • CN:01
  • ISSN:22-1341/T
  • 分类号:6-18
摘要
建立了16英寸组装式车轮90°冲击试验仿真模型,综合考虑车轮的材料特性、结构参数和90°冲击性能,提出了车轮多目标轻量化设计方法。分析了冲锤正对轮辐窗口冲击和冲锤正对轮辐气门嘴窗口冲击工况下,车轮轮辋和轮辐的塑性应变和变形量。利用网格变形技术建立组装式车轮90°冲击参数化模型并定义设计变量,以质量和90°冲击各项性能为优化目标,使用Isight优化平台集成DEP-MeshWorks和LS-DYNA软件进行最优拉丁超立方设计和Hammersley设计,拟合目标响应值的Kriging近似模型并验证其精度,采用第二代非劣排序遗传算法(NSGA-Ⅱ)对车轮进行了多目标优化设计。优化得到的组装式车轮与同型铸造铝合金车轮相比,质量减少了28.28%。依据车轮90°冲击试验标准,对优化后的车轮进行试验,对比车轮各测点等效应变和最大加速度的仿真与试验值,得出车轮90°冲击仿真结果精度较高。
        Based on the finite element simulation models of the 16-inch assembled wheel for 90°impact tests,a multi-objective lightweight design method was proposed.In this method the material properties,structure parameters and 90°impact performance of the wheel were considered.The plastic strain and deformation of the spoke and rim of the wheel during hammer impact facing the window and hammer impact facing the valve window were obtained,which meet the wheel impact test standard and can be optimized furthermore.Mesh morphing technology was employed to build the parametric models of the assembled wheel,which was used to define the design variables,and the mass and 90°impact performance were defined as the objective functions.Then,the Optimal LatinHypercube design and Hammersley design were used to fit the Kriging surrogate model of the target response value and to validate the precision of the surrogate model in Isight software platform,where the DEP-MeshWorks and LS-DYNA software were integrated.Finally,Non-dominate Sort Genetic Algorithm(NSGA-II)was adopted to perform the multi-objective optimization of the wheel.The weight of the optimized assembled wheel was 28.28%less than that of the same type cast aluminum alloy wheel.According to 90°impact test standard for wheel,the test for the optimized wheels were conducted to validate the high-accuracy simulation results by comparing the simulation and test values of equivalent strain and maximum acceleration on the measuring points.
引文
[1]Hirano A.Study on wheel stiffness considering balance between driving stability and weight[C]∥SAE Paper,2015-01-1755.
    [2]臧孟炎,秦滔.铝合金车轮13°冲击试验仿真分析[J].机械工程学报,2010,46(2):83-87.Zang Meng-yan,Qin Tao.Simulation analysis of car Al-alloy wheel 13°impact test[J].Journal of Mechanical Engineering,2010,46(2):83-87.
    [3]尹冀,朱平,章斯亮.考虑应变率效应的钢制车轮冲击仿真与试验[J].上海交通大学学报,2013,47(6):967-971.Yin Ji,Zhu Ping,Zhang Si-liang.Simulation and experimental study of steel wheel impact test considering strain rate effect[J].Journal of Shanghai Jiaotong University,2013,47(6):967-971.
    [4]Chang C L,Yang S H.Simulation of wheel impact test using finite element method[J].Engineering Failure Analysis,2009,16(5):1711-1719.
    [5]郑玉卿,刘建峰.基于Abaqus显式算法的铸铝车轮碰撞模拟[J].汽车工程,2011,33(2):152-155.Zheng Yu-qing,Liu Jian-feng.Impact simulation of casting aluminum wheel using Abaqus/explicit[J].Automotive Engineering,2011,33(2):152-155.
    [6]Vinothkumar S,Srinivasan S,Nesarikar A K.Simulation and test correlation of wheel impact test[C]∥SAE Paper,2011-28-0129.
    [7]Tsai G C,Huang K Y.13°impact test analysis of aluminum alloy wheel[J].Advanced Materials Research,2013,631-632:925-931.
    [8]Chauhan M R,Kotwal G,Majge A.Numerical simulation of tire and wheel assembly impact test using finite element method[C]∥SAE Paper,2015-26-0186.
    [9]Ishikawa S,Sakai Y,Nosaka N.Application of impact analysis for aluminum wheel with inflated tire[C]∥SIMULIA Community Conference,Providence and Rhode Island,USA,2014.
    [10]Shang R,Altenhof W,Hu H,et al.Kinetic energy compensation of tire absence in numerical modeling of wheel impact testing[C]∥SAE Paper,2005-01-1825.
    [11]Firat M,Kozan R,Ozsoy M,et al.Numerical modeling and simulation of wheel radial fatigue tests[J].Engineering Failure Analysis,2009,16(5):1533-1541.
    [12]Wan X,Shan Y,Liu X,et al.Simulation of biaxial wheel test and fatigue life estimation considering the influence of tire and wheel camber[J].Advances in Engineering Software,2016,92:57-64.
    [13]Tiwari D,Arora J,Khanger R.Study of parameters affecting the impact performance of an alloy wheel and noble approach followed to improve the impact performance[C]∥SAE Paper,2015-01-1514.
    [14]Mooney M J.A theory of large elastic deformation[J].Journal of Applied Physics,1940,11(6):582-592.
    [15]李兵.计及复杂胎面花纹的子午线轮胎结构有限元分析[D].合肥:中国科学技术大学工程科学学院,2008.Li Bing.Finite element structural analysis for radial tires with complex tread patterns considered[D].Hefei:School of Engineering Science,University of Science and Technology of China,2008.
    [16]王浩.橡胶材料的超弹性本构模型在轮胎分析中的应用[D].哈尔滨:哈尔滨工业大学复合材料与结构研究所,2008.Wang Hao.Application of hyper-elastic constitutive models on rubbers in tyre analysis[D].Harbin:Center for Composite Materials,Harbin Institute of Technology,2008.
    [17]Yi G,Kim N H.Identifying boundaries of topology optimization results using basic parametric features[J].Structural and Multidisciplinary Optimization,2017(55):1641-1654.
    [18]Hahn Y,Cofer J I.Study of parametric and nonparametric optimization of a rotor-bearing system[C]∥Turbine Technical Conference and Exposition,AmericanSocietyofMechanicalEngineers,Düsseldorf,Germany,2014:V07AT28A001.
    [19]Leifsson L,Hermannsson E,Koziel S.Optimal shape design of multi-element trawl-doors using local surrogate models[J].Journal of Computational Science,2015,10:55-62.
    [20]Golzari A,Sefat M H,Jamshidi S.Development of an adaptive surrogate model for production optimization[J].Journal of Petroleum Science and Engineering,2015,133:677-688.
    [21]Pan I,Das S.Kriging based surrogate modeling for fractional order control of microgrids[J].IEEE Transactions on Smart Grid,2015,6(1):36-44.
    [22]Mehmani A,Chowdhury S,Messac A.Predictive quantification of surrogate model fidelity based on modal variations with sample density[J].Structural and Multidisciplinary Optimization,2015,52(2):353-373.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700