用户名: 密码: 验证码:
基于运行参数特征的风力机叶片覆冰诊断方法
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Diagnosis of Ice Accretion on Wind Turbine Blades Based on the Features of Operating Parameters
  • 作者:龚妙 ; 李录平 ; 刘瑞 ; 张浩 ; 封江
  • 英文作者:GONG Miao;LI Luping;LIU Rui;ZHANG Hao;FENG Jiang;School of Energy and Power Engineering, Changsha University of Science and Technology;
  • 关键词:特征提取 ; 状态指标 ; BP神经网络 ; 叶片覆冰 ; SCADA系统
  • 英文关键词:feature extraction;;state index;;BP neural network;;ice accretion on wind turbine blade;;SCADA system
  • 中文刊名:DONG
  • 英文刊名:Journal of Chinese Society of Power Engineering
  • 机构:长沙理工大学能源与动力工程学院;
  • 出版日期:2019-03-15
  • 出版单位:动力工程学报
  • 年:2019
  • 期:v.39;No.291
  • 基金:湖南省教育厅科学研究资助项目(15C0025);; 广州特种承压设备检测研究院科技资助项目
  • 语种:中文;
  • 页:DONG201903008
  • 页数:6
  • CN:03
  • ISSN:31-2041/TK
  • 分类号:51-56
摘要
为更好地解决工程实际中的叶片覆冰问题,通过建立叶片覆冰状态特征参数处理模型,提取出能反映叶片覆冰状态的6种故障特征指标,并将其作为输入,将叶片覆冰状态作为输出,建立风电机组叶片覆冰诊断的BP神经网络模型,利用实际风电机组数据采集与监视控制(SCADA)系统数据构造BP神经网络的训练样本和测试样本。结果表明:所构建的叶片覆冰诊断模型能准确地诊断出叶片覆冰状态。
        To solve the problem of ice accretion on wind turbine blades in actual engineering applications, a characteristic parameter processing model was established, based on which, six characteristic indexes indicating the icing condition of wind turbine blades were extracted. Taking above six characteristic indexes as the inputs, and the blade ice accretion condition as the output, a BP neural network model was constructed for the diagnosis of ice accretion on wind turbine blades, with the data from actual wind turbine SCADA systems as the training samples and test samples. Results show that the model proposed can help to accurately detect the ice accretion on wind turbine blades.
引文
[1] 肖俊峰, 李建兰. 风力机传动链齿轮齿根疲劳裂纹扩展剩余寿命评估[J]. 动力工程学报, 2017, 37(1): 45-51, 78. XIAO Junfeng, LI Jianlan. Residual life evaluation of gear root crack growth in driving train of a wind turbine[J]. Journal of Chinese Society of Power Engineering, 2017, 37(1): 45-51, 78.
    [2] 郝艳捧, 刘国特, 阳林, 等. 风力机组叶片覆冰数值模拟及其气动载荷特性研究[J]. 电工技术学报, 2015, 30(10): 292-300. HAO Yanpeng, LIU Guote, YANG Lin, et al. Study on ice numerical simulation and its power loss characteristics for the blades of wind turbine[J]. Transactions of China Electrotechnical Society, 2015, 30(10): 292-300.
    [3] VIRK M S. Effect of wind turbine blade profile symmetry on ice accretion[J]. Applied Mechanics and Materials, 2017, 863: 229-234.
    [4] 付忠广, 石黎. 覆冰条件下风力机翼型气动性能的研究[J]. 太阳能学报, 2016, 37(3): 609-616. FU Zhongguang, SHI Li. Aerodynamic performance of wind turbine airfoil under icing conditions[J]. Acta Energiae Solaris Sinica, 2016, 37(3): 609-616.
    [5] SAGOL E. Three dimensional numerical predicton of icing related power and energy losses on a wind turbine[D]. Montréal: école Polytechnique de Montréal, 2014.
    [6] YIRTICI O, TUNCER I H, OZGEN S. Ice accretion prediction on wind turbines and consequent power losses[J]. Journal of Physics: Conference Series, 2016, 753(2): 022022.
    [7] 刘胜先, 李录平, 余涛, 等. 基于振动检测的风力机叶片覆冰状态诊断技术[J]. 中国电机工程学报, 2013, 33(32): 88-95. LIU Shengxian, LI Luping, YU Tao, et al. Diagnosis technology for the icing status of wind turbine blades based on vibration detection[J]. Proceedings of the CSEE, 2013, 33(32): 88-95.
    [8] 雷利斌, 李录平, 刘胜先, 等. 基于振型曲率的风力机叶片覆冰检测技术[J]. 太阳能学报, 2014, 35(5): 841-847. LEI Libin, LI Luping, LIU Shengxian, et al. Technology on ice detection of wind turbine blade based on the curvature mode shapes[J]. Acta Energiae Solaris Sinica, 2014, 35(5): 841-847.
    [9] 卢勇, 莫旭杰, 李晓光, 等. 风力发电机组叶片结冰检测系统及其方法: CN105089929A[P]. 2015-11-25.
    [10] 张雪松, 霍峰, 刘忠朋, 等. 一种风力发电机组叶片结冰检测的方法和装置: CN105464912A[P]. 2016-04-06.
    [11] VIRK M S. Wind turbine blade profile thickness effects on atmospheric ice accretion[C]//Proceedings of 2016 IEEE International Conference on Power and Renewable Energy. Shanghai, China: IEEE, 2017.
    [12] ETEMADDAR M, HANSEN M O L, MOAN T. Wind turbine aerodynamic response under atmospheric icing conditions[J]. Wind Energy, 2014, 17(2): 241-265.
    [13] PALACIOS J L, HAN Yiqiang, BROUWERS E W, et al. Icing environment rotor test stand liquid water content measurement procedures and ice shape correlation[J]. Journal of the American Helicopter Society, 2012, 57(2): 29-40.
    [14] VILLALPANDO F, REGGIO M, ILINCA A. Prediction of ice accretion and anti-icing heating power on wind turbine blades using standard commercial software[J]. Energy, 2016, 114: 1041-1052.
    [15] 谭海辉. 风力机桨叶超声波防除冰理论与技术研究[D]. 长沙: 长沙理工大学, 2011.
    [16] 舒立春, 任晓凯, 胡琴, 等. 环境参数对小型风力发电机叶片覆冰特性及输出功率的影响[J]. 中国电机工程学报, 2016, 36(21): 5873-5878. SHU Lichun, REN Xiaokai, HU Qin, et al. Influences of environmental parameters on icing characteristics and output power of small wind turbine[J]. Proceedings of the CSEE, 2016, 36(21): 5873-5878.
    [17] MA Q, WU X M, CHEN Y. Numerical simulation of ice accretion on wind turbine blades[J]. Journal of Engineering Thermophysics, 2014, 35(4): 770-773.
    [18] 刘钦东, 李岩, 王绍龙, 等. 攻角对NACA0018翼型明冰分布影响的风洞结冰试验研究[J]. 中国科技论文, 2015, 10(23): 2716-2719. LIU Qindong, LI Yan, WANG Shaolong, et al. A wind tunnel experimental study of glaze distribution effect on NACA0018 airfoil with the change of attack angles[J]. China Sciencepaper, 2015, 10(23): 2716-2719.
    [19] 杨帆. 大型风力机叶片桨距角与风速数值关系的流固耦合分析[D]. 湘潭: 湘潭大学, 2017.
    [20] 周世晟. 基于风轮气动特性的变桨距控制器设计[D]. 北京: 华北电力大学, 2012.
    [21] 张英, 魏晓华, 吉小康. 基于模糊控制和功率控制的风电偏航研究[J]. 计算机技术与发展, 2011, 21(6): 212-215. ZHANG Ying, WEI Xiaohua, JI Xiaokang. Yaw control system's research of wind power based on fuzzy control and power control[J]. Computer Technology and Development, 2011, 21(6): 212-215.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700