用户名: 密码: 验证码:
废弃矿井微生物群落演替特征实验研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Experimental Study of Microbial Community Succession Characteristics in Abandoned Mine Groundwater
  • 作者:单爱琴 ; 张燕婷 ; 肖洁 ; 冯启言 ; 高波
  • 英文作者:SHAN Aiqin;ZHANG Yanting;XIAO Jie;FENG Qiyan;GAO Bo;School of Environment and Mapping, China University of Mining and Technology;
  • 关键词:废弃矿井 ; 微生物群落 ; 演替特征 ; 菌群丰度 ; 生物多样性
  • 英文关键词:abandoned mines;;microbial community;;succession characteristics;;flora abundance;;biodiversity
  • 中文刊名:FJKS
  • 英文刊名:Environmental Science & Technology
  • 机构:中国矿业大学环境与测绘学院;
  • 出版日期:2019-04-15
  • 出版单位:环境科学与技术
  • 年:2019
  • 期:v.42
  • 基金:国家自然科学基金资助项目(41472223)
  • 语种:中文;
  • 页:FJKS201904006
  • 页数:7
  • CN:04
  • ISSN:42-1245/X
  • 分类号:37-43
摘要
矿井被关闭前后,井下环境条件有很大的差异,尤其是温度、压力、光照、水质、氧化还原条件会发生明显的改变,由此引起废弃矿井中微生物群落结构、多样性、演替规律发生变化,微生物的演替也将影响到井下污染物的降解和矿井水水质。该研究利用井下原煤、煤泥、矿井水进行了废弃矿井封闭和半封闭状态下的模拟实验,探讨了2种模拟中的微生物群落演替及多样性变化特征,实验周期为135 d。实验结果表明,矿井关闭后,细菌为环境中可培养好氧微生物的绝对优势菌群,占比例达到90%以上。封闭和半封闭条件下细菌丰度和多样性均呈增加趋势,但受环境中氧含量的影响,封闭条件下厌氧微生物丰度和多样性出现明显的增加。利用高通量测序技术,分析了细菌群落的演替规律,结果表明,封闭及半封闭条件下实验体系中优势细菌主要为芽孢杆菌(Bacillus)和乳球菌(Lactococcus)等兼性厌氧菌,随着时间变化,亚硝化单胞菌(Nitrosomonadaceae)、硝化螺菌(Nitrospira)和节杆菌(Arthrobacter)等好氧菌逐渐衰亡,乳酸杆菌(Lactobacillus)、拟杆菌(Bacteroides)、链球菌(Streptococcus)、明串珠菌(Leuconostoc)等厌氧菌含量逐渐增加。
        After the disused mine has ceased production, the ecological environment structure and function of underground mine are changed, especially in temperature, pressure, light, water quality and redox conditions, which cause the structure, diversity and succession of microbial communities in abandoned mines. Changes in microbial succession industry will affect the degradation of underground pollutants and water quality in mines. In this study, downhole coal, coal, mine water were used to a simulated experiment in abandoned mines closed or semi-closed, to explore the microbial community succession of two types of simulated variation and diversity characteristics, with the experimental period of 135 days. The results showed that after the closure of the mine, bacteria accounted for more than 90% of the dominant bacteria in the environment. The abundance and diversity of bacteria increased under closed and semi closed conditions, but influenced by the oxygen content in the environment, the abundances and diversity of anaerobic microbes increased significantly under closed conditions. By 16 S r DNA bacterial diversity analysis, and the sequence of OTU(the Operational Taxonomic Unit) analysis, the results show that the dominant bacteria in the experimental system were mainly facultative anaerobes such as Bacillus and Lactococcus under closed and semi-closed conditions. With the time, the aerobic bacteria such as Nitrosomonadaceae, Nitrospira and Arthrobacter gradually decayed and the content of anaerobic bacteria such as Lactobacillus, Bacteroides, Streptococcus and Leuconostoc increased gradually.
引文
[1]虎维岳,周建军,闫兰英.废弃矿井水位回弹诱致环境与安全灾害分析[J].西安科技大学学报,2010,30(4):436-440.Hu Weiyue,Zhou Jianjun,Yan Lanying.Analysis of environmental and safety hazards induced by rebound of abandoned mine water level[J].Journal of Xi'an University of Science and Technology,2010,30(4):436-440.
    [2]李庭.废弃矿井地下水污染风险评价研究[D].徐州:中国矿业大学,2014.Li Ting.Research on Risk Assessment of Groundwater Pollution in Abandoned Mines[D].Xuzhou:China University of Mining and Technology,2014.
    [3]Liu Pu,Sun Yajun.Discussion on groundwater pollution and its prevention and control technology in closed pit mine[J].Mining Research and Development,2011,31(4):91-95.
    [4]冯东梅.闭矿后矿区环境地质灾害分析[J].辽宁工程技术大学学报,2002,21(4):526-527.Feng Dongmei.Analysis of environmental geological disasters in mining area after closure[J].Journal of Liaoning Technical University,2002,21(4):526-527.
    [5]朱维耀,夏小雪,郭省学,等.高温高压条件下油藏内源微生物微观驱油机理[J].石油学报,2014,35(3):528-535.Zhu Weiyao,Xia Xiaoxue,Guo Shengxue,et al.Microscopic oil displacement mechanism of endogenous microbes in reservoirs under high temperature and high pressure conditions[J].Acta Petroleum Sinica,2014,35(3):528-535.
    [6]Wang Tingting,Zhao Wanchun,Zhao Dan,et al.Study on chaos features of crack network evolution in coal-rock fracturing[J].Journal of Computational Methods in Sciences and Engineering,2016,16(3).
    [7]王腾旭,马星宇,王萌萌,等.中高温污泥厌氧消化系统中微生物群落比较[J].微生物学通报,2016(1):26-35.Wang Tengxu,Ma Xingyu,Wang Mengmeng,et al.Comparison of microbial communities in anaerobic digestion system of medium and high temperature sludge[J].Bulletin of Microbiology,2016(1):26-35.
    [8]陈骏,连宾,王斌,等.极端环境下的微生物及其生物地球化学作用[J].地学前缘,2006(6):199-207.Chen Jun,Lian Bin,Wang Bin,et al.Microorganisms and their biogeochemical effects in extreme environments[J].Geoscience Frontiers,2006(6):199-207.
    [9]董春娟,吕炳南,马立,等.微生物群落在难降解物质生物降解中的作用[J].哈尔滨工业大学学报,2003(7):893-896.Dong Chunjuan,Lyu Bingnan,Ma Li,et al.The role of microbial communities in the biodegradation of refractory materials[J].Journal of Harbin Institute of Technology,2003(7):893-896.
    [10]Viamajala Sridhar,Peyton Brent M,Richards Lee A,et al.Solubilization,solution equilibria,and biodegradation of PAH's under thermophilic conditions[J].Chemosphere,2006,66(6).
    [11]李耀辰,鲍建国,周旋,等.高盐度有机废水对生物处理系统的影响研究进展[J].环境科学与技术,2006,29(6):109-111,121.Li Yaochen,Bao Jianguo,Zhou Xuan,et al.Research progress on the influence of high salinity organic wastewater on biological treatment system[J].Environmental Science&Technology,2006,29(6):109-111,121.
    [12]Kim Jaisoo,Koo So-Yeon,Kim Ji-Young.Influence of acid mine drainage on microbial communities in stream and groundwater samples at Guryong Mine,South Korea[J].Environmental Geology,2009,58:1567-1574.
    [13]Xie Xuehui,Xiao Shengmu,Liu Jianshe.Microbial communities in acid mine drainage and their interaction with pyrite surface[J].Current Microbiology,2009,59(1):71-77.
    [14]万民熙.大宝山酸性矿坑水中微生物群落及其群落在亚铁选择压力下的演替规律[D].长沙:中南大学,2007.Wan Minxi.The Succession of Microbial Communities and Their Communities in the Acid Mine Pit Water of Dabaoshan under Ferrous Iron Selection Pressure[D].Changsha:Central South University,2007.
    [15]刘晋仙,李毳,景炬辉,等.中条山十八河铜尾矿库微生物群落组成与环境适应性[J].环境科学,2017(1):318-326.Liu Jinxian,Li Wei,Jing Juhui,et al.Microbial community composition and environmental adaptability of the eighteen river copper tailings reservoir in Zhongtiao Mountain[J].Environmental Science,2017(1):318-326.
    [16]Li Zheng,Gu Guizhou,Zhao Chaocheng,et al.Degradation characteristics and community structure of a hydrocarbon degrading bacterial consortium[J].China Petroleum Processing&Petrochemical Technology,2015,17(3):15-24.
    [17]Thavamani P,Samkumar R A,Satheesh V,et al.Microbes from mined sites:harnessing their potential for reclamation of derelict mine sites[J].Environmental Pollution,2017,230:495-505.
    [18]严群,黄俊文,唐美香,等.矿山废水的危害及治理技术研究进展[J].金属矿山,2010(8):183-186.Yan Qun,Huang Junwen,Tang Meixiang,et al.Research progress on the harm and treatment technology of mine wastewater[J].Metal Mine,2010(8):183-186.
    [19]Sánchez-Andrea Irene,Knittel Katrin,Amann Rudolf,et al.Quantification of Tinto River sediment microbial communities:importance of sulfate-reducing bacteria and their role in attenuating acid mine drainage[J].Applied and Environmental Microbiology,2012,78(13):4638-4645.
    [20]霍强,刘晰,刘文斌,等.封闭环境下酸性矿坑水中微生物生态多样性的研究[J].现代生物医学进展,2009(12):2255-2259.Huo Qiang,Liu Xi,Liu Wenbin,et al.Study on microbial ecological diversity in acidic pit water in closed environment[J].Progress in Modern Biomedicine,2009(12):2255-2259.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700