用户名: 密码: 验证码:
微生物矿化作用改善岩土材料性能的影响因素
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Factors affecting improvement in engineering properties of geomaterials by microbial-induced calcite precipitation
  • 作者:尹黎阳 ; 唐朝生 ; 谢约翰 ; 吕超 ; 蒋宁俊 ; 施斌
  • 英文作者:YIN Li-yang;TANG Chao-sheng;XIE Yue-han;Lü Chao;JIANG Ning-jun;SHI Bin;School of Earth Sciences and Engineering, Nanjing University;High-Tech Institute at Suzhou Nanjing University;Department of Civil and Environmental Engineering, University of Hawaii;
  • 关键词:微生物矿化作用 ; 影响因素 ; 菌种 ; 浓度 ; 温度 ; pH值 ; 胶结液 ; 土的性质 ; 灌浆
  • 英文关键词:microbial-induced calcite precipitation;;factors;;bacterium;;concentration;;temperature;;pH;;cementation solution;;soil properties;;grouting method
  • 中文刊名:YTLX
  • 英文刊名:Rock and Soil Mechanics
  • 机构:南京大学地球科学与工程学院;南京大学(苏州)高新技术研究院;美国夏威夷大学土木与环境工程系;
  • 出版日期:2019-07-12 17:17
  • 出版单位:岩土力学
  • 年:2019
  • 期:v.40;No.304
  • 基金:国家自然科学基金项目(No.41572246,No.41772280);国家自然科学基金重点项目(No.41230636);; 优秀青年科学基金项目(No.41322019);; 江苏省自然科学基金项目(No.BK20171228,No.BK20170394);; 中央高校基本科研业务费专项资金资助~~
  • 语种:中文;
  • 页:YTLX201907007
  • 页数:22
  • CN:07
  • ISSN:42-1199/O3
  • 分类号:62-83
摘要
基于微生物诱导碳酸钙沉淀作用(MICP)的土体改性技术近年来在岩土工程领域引起了人们的广泛关注。该技术在改善岩土材料的强度、刚度、抗液化、抗侵蚀及抗渗透性等性能的同时,还能维持土体良好的透气性和透水性,改善植物的生长环境。由于微生物矿化作用涉及一系列生物化学和离子化学反应,固化过程中的反应步骤较多,因此,MICP固化效果受许多因素的制约与影响。基于大量文献资料,系统总结了细菌种类、菌液浓度、温度、pH值、胶结液配比及土的性质等关键因素对微生物改善岩土材料性能的影响,讨论了这些影响因素的优化方式和未来的研究方向,主要得到了以下几点结论:菌种类型、菌液浓度、温度、pH、胶结液性质会从微观上影响碳酸钙的晶体类型、形貌和尺寸,进而在宏观层面影响岩土体的胶结效果;菌液浓度尽可能高、温度在20~40℃间、pH值在7.0~9.5左右、胶结液浓度在1mol/L以内的因素条件对微生物加固岩土体具有较好的效果。上述范围内的低温、较高的pH值、低浓度胶结液有助于提高土体的抗渗性,而高温、较低的pH值以及中高浓度胶结液有助于提高土体的强度;MICP加固土体的有效粒径范围为10~1 000μm,相对密度越大、级配越好则加固效果越好。分步灌浆法、多浓度相灌注法及电渗灌浆法有助于提高土体固化均匀性,0.042(mol/L)/h以下的注浆速度有利于提高胶结液利用率,砂土试样的灌浆压力一般在10~30kPa之间,粉黏土试样的灌浆压力不宜超过110 kPa,过高的灌浆压力会破坏土体结构,降低固化效果。
        Based on microbial induced carbonate precipitation(MICP), soil modification technology has attracted widespread concern in geotechnical engineering. This technology can not only improve the soil strength, stiffness, the properties of anti-liquefaction, anti-erosion and anti-permeability but also maintain good soil permeability and water permeability and improve the growth environment of the plants simultaneously. As the microbial mineralisation involves a series of complex biochemical and ion chemical reactions in the curing process, soil modification through MICP curing can be affected by many factors. In this paper, the effects of influence factors on the performance of microbial improved geomaterials were summarised, such as bacterial species, bacterial concentration, temperature, pH, the ratio of cement solution and soil properties, and their optimisation methods and future research direction were discussed as well. The conclusions are as follows. The bacteria type, bacteria concentration, temperature, pH, and the nature of the cement can affect the crystal type, crystal appearance, and size of calcium carbonates microscopically, and further affect the cementing effect of geomaterials macroscopically. The optimized conditions for strengthening the geomaterials are under the high bacteria concentration, the temperature from 20℃ to 40℃, the pH from 7 to 9.5, and the concentration of the cementation solution within 1 mol/L. In the optimised range of those factors, the soil permeability is improved by relatively low temperature, high pH value, and low concentration of cementation solution, while the soil strength is enhanced by the relatively high temperature, low pH value and high concentration of cementation solution. The effective grain size ranges from 10 to 1 000 μm, and the relatively large size and good gradation can promote the consolidation effect. The methods of multi-phase grouting, multi-concentration grouting and electroosmosis grouting improve the uniformity of soil solidification. The grouting speed below 0.042 mol/L/h is beneficial to improve the utilization ratio of the cement solution. The grouting pressure of the sand specimen is generally between 10 kPa~30 kPa bar, the grouting pressure of the silt and clay specimen should not exceed 110 kPa, and the high grouting pressure destroys the structure of soil and reduces the curing effect.
引文
[1]李蓉,侯天顺.水泥土搅拌桩及其在软土地基加固中的应用[J].建筑科学,2008,24(5):88-90.LI Rong,HOU Tian-shun.The cement-soil mixing pile and its application in soft-soil subgrades[J].Building Science,2008,24(5):88-90.
    [2]白涛,齐晓迪,袁树基.砂土地基加固方法的工程应用[J].建筑科学与工程学报,2008,25(2):116-119.BAI Tao,QI Xiao-di,YUAN Shu-ji.Engineering application of reinforcement method of sand foundation[J].Journal of Architecture and Civil Engineering,2008,25(2):116-119.
    [3]张福海,王保田,刘汉龙.强夯法在城市防洪工程地基加固中的应用研究[J].岩土力学,2004,25(3):490-494.ZHANG Fu-hai,WANG Bao-tian,LIU Han-long.Application of dynamic compaction to foundation improvement of a flood-prevention dam in Yibin[J].Rock and Soil Mechanics,2004,25(3):490-494.
    [4]黄月文,区晖.高分子灌浆材料应用研究进展[J].高分子通报,2000(4):71-76.HUANG Yue-wen,QU Hui.Research status of polymeric grouting material[J].Polymer Bulletin,2000(4):71-76.
    [5]CHU J,IVANOV V,STABNIKOV V.Microbial method for construction of an aquaculture pond in sand[J].Géotechnique,2013,63(10):871-875.
    [6]CHU J,IVANOV V,HE J.Development of microbial geotechnology in Singapore[J].Geotechnical Special Publication,2011(211):4070-4078.
    [7]CHU J,STABNIKOV V,IVANOV V.Microbially induced calcium carbonate precipitation on surface or in the bulk of soil[J].Geomicrobiology,2012,29(6):544-549.
    [8]IVANOV V,CHU J.Applications of microorganisms to geotechnical engineering for bioclogging and biocementation of soil in situ[J].Reviews in Environmental Science&Biotechnology,2008,7(2):139-153.
    [9]IVANOV V,CHU J.Applications of microorganisms to geotechnical engineering for bioclogging and biocementation of soil in situ[J].Reviews in Environmental Science&Biotechnology,2008,7(2):139-153.
    [10]MITCHELL J K,SANTAMARINA J C.Biological considerations in geotechnical engineering[J].Journal of Geotechnical&Geoenvironmental Engineering,2005,131(10):1222-1233.
    [11]李辉,连宾,龚国洪.碳酸钙颗粒的细菌诱导形成[J].高校地质学报,2011,17(1):112-117.LI Hui,LIAN-bin,GONG Guo-hong.The formation of calcium carbonate particles induced by bacteria[J].Geological Journal of China Universities,2011,17(1):112-117.
    [12]MUYNCK D W,BELIE D N,VERSTRAETE W.Microbial carbonate precipitation in construction materials:a review[J].Ecological Engineering,2010,36(2):118-136.
    [13]DEJONG J T,FRITZGES M B,NüSSLEIN K.Microbially induced cementation to control sand response to undrained shear[J].Journal of Geotechnical&Geoenvironmental Engineering,2006,132(11):1381-1392.
    [14]钱春香,王安辉,王欣.微生物灌浆加固土体研究进展[J].岩土力学,2015,36(6):1537-1548.QIAN Chun-xiang,WANG An-hui,WANG Xin.Advances of soil improvement with bio-grouting[J].Rock and Soil Mechanics,2015,36(6):1537-1548.
    [15]IVANOV V,CHU J,STABNIKOV V.Basics of construction microbial biotechnology[M].Chambridge:Springer,2014.
    [16]HAMMES F,BOON N,DE V J,et al.Strain-specific ureolytic microbial calcium carbonate precipitation[J].Applied&Environmental Microbiology,2003,69(8):4901.
    [17]SUGAWARA A,KATO T.Aragonite CaCO3 thin-film formation by cooperation of Mg2+and organic polymer matrices[J].Chemical Communications,2000,6(6):487-488.
    [18]LEVI Y,ALBECK S,BRACK A.Control over aragonite crystal nucleation and growth:an in vitro study of biomineralization[J].Chemistry-A European Journal,2015,4(3):389-396.
    [19]TOURNEY J,NGWENYA B T.Bacterial extracellular polymeric substances(EPS)mediate Ca CO3morphology and polymorphism[J].Chemical Geology,2009,262(3):138-146.
    [20]ERCOLE C,BOZZELLI P,ALTIERI F.Calcium carbonate mineralization:involvement of extracellular polymeric materials isolated from calcifying bacteria[J].Microscopy&Microanalysis the Official Journal of Microscopy Society of America Microbeam Analysis Society Microscopical Society of Canada,2012,18(4):829-839.
    [21]MELDRUM F C,C?LFEN H.Controlling mineral morphologies and structures in biological and synthetic systems[J].Chemical Reviews,2009,40(5):4332-4432.
    [22]GOROSPE C M,HAN S H,KIM S G.Effects of different calcium salts on calcium carbonate crystal formation by Sporosarcina pasteurii KCTC 3558[J].Biotechnology&Bioprocess Engineering,2013,18(5):903-908.
    [23]KRALJ D,BRE?EVI?L,NIELSEN A E.Vaterite growth and dissolution in aqueous solution II.Kinetics of dissolution[J].Journal of Crystal Growth,1994,143(3-4):269-276.
    [24]AL QABANY A,SOGA K,SANTAMARINA C.Factors affecting efficiency of microbially induced calcite precipitation[J].Journal of Geotechnical&Geoenvironmental Engineering,2012,138(8):992-1001.
    [25]AL THAWADI S.High strength in-situ biocementation of soil by calcite precipitating locally isolated ureolytic bacteria[D].Perth:Murdoch University,2008.
    [26]MELDRUM F C,C?LFEN H.Controlling mineral morphologies and structures in biological and synthetic systems[J].Chemical Reviews,2009,40(5):4332-4432.
    [27]荣辉,钱春香,李龙志.微生物水泥胶结机理[J].硅酸盐学报,2013,41(3):314-319.RONG Hui,QIAN Chun-xiang,LI Long-zhi.Cementation mechanism of microbe cement[J].Journal of the Chinese Ceramic Society,2013,41(3):314-319.
    [28]DHAMI N K,REDDY M S,MUKHERJEE A.Biomineralization of calcium carbonate polymorphs by the bacterial strains isolated from calcareous sites[J].Journal of Microbiology&Biotechnology,2013,23(5):707.
    [29]MCCOY D,CETIN A,HAUSINGER R P.Characterization of urease from Sporosarcina ureae[J].Archives of Microbiology,1992,157(5):411-416.
    [30]WHIFFIN V S.Microbial Ca CO3 precipitation for the production of biocement[D].Perth:Murdoch University,2004.
    [31]AL-SALLOUM Y,ABBAS H,SHEIKH Q I.Effect of some biotic factors on microbially-induced calcite precipitation in cement mortar[J].Saudi Journal of Biological Sciences,2017,24(2):286-294.
    [32]OKWADHA G D O,LI J.Optimum conditions for microbial carbonate precipitation[J].Chemosphere,2010,81(9):1143-1148.
    [33]STOCKS-FISCHER S,GALINAT J K,BANG S.Microbiological precipitation of CaCO3[J].Soil Biology&Biochemistry,1999,31(11):1563-1571.
    [34]黄琰,罗学刚,杜菲.微生物诱导方解石沉积加固的影响因素[J].西南科技大学学报,2009,24(3):87-93.HUANG Yan,LUO Xue-gang,DU Fei.Studies on the factors of microbiologically-induced calcite precipitation[J].Journal of Southwest University of Science and Technology,2009,24(3):87-93.
    [35]张越.微生物用于砂土胶凝和混凝土裂缝修复的试验研究[D].北京:清华大学,2014.ZHANG Yue.Research on sand cementation and concrete cracks repairment by microbially induced carbonate precipitation technology[D].Beijing:Tsinghua University,2014.
    [36]李萌,程晓辉,杨钻.巴氏芽孢八叠球菌诱变选育脲酶高产菌株[J].中国农业科技导报,2013,15(6):130-134.LI Meng,CHENG Xiao-hui,YANG Zuan.Breeding high-yield urease-producing Sporosarcina pasteurii strain by NTG mutation[J].Journal of Agricultural Science and Technology,2013,15(6):130-134.
    [37]ACHAL V,MUKHERJEE A,BASU P C.Strain improvement of sporosarcina pasteurii for enhanced urease and calcite production[J].Journal of Industrial Microbiology&Biotechnology,2009,36(7):981-988.
    [38]MUYNCK W D,VERBEKEN K,BELIE N D.Influence of temperature on the effectiveness of a biogenic carbonate surface treatment for limestone conservation[J].Applied Microbiology&Biotechnology,2013,97(3):1335-1347.
    [39]李萌,程晓辉,杨钻.土壤中产脲酶细菌的分离及其在微生物砂浆制备中的应用[J].混凝土与水泥制品,2013(8):13-16.LI Meng,CHENG Xiao-hui,YANG Zuan.Isolation of urease-producing bacteria from soil and application in microbial mortar preparation[J].China Concrete and Cement Products,2013(8):13-16.
    [40]CUSSAC V,FERRERO R L,LABIGNE A.Expression of helicobacter pylori urease genes in Escherichia coli grown under nitrogen-limiting conditions[J].Journal of Bacteriology,1992,174(8):2466-2473.
    [41]WHITAKER J.Assessing recombinant expression of urease enzyme from sporosarcina ureae as a carbonatogenic method for strength enhancement of loose,sandy soils[D].Ottawa:University of Ottawa 2016.
    [42]FERRIS F G,FYFE W S,BEVERIDGE T J.Bacteria as nucleation sites for authigenic minerals in a metal-contaminated lake sediment[J].Chemical Geology,1987,63(3):225-232.
    [43]成亮,钱春香,王瑞兴.碳酸岩矿化菌诱导碳酸钙晶体形成机理研究[J].化学学报,2007(19):2133-2138.CHENG Liang,QIAN Chun-xiang,WANG Rui-xing.Study on the mechanism of calcium carbonate formation induced by carbonate-mineralization microbe[J].Acta Chimica Sinica,2007(19):2133-2138.
    [44]BOSAK T.Microbial kinetic controls on calcite morphology in supersaturated solutions[J].Journal of Sedimentary Research,2005,75(2):190-199.
    [45]BOSAK T,SOUZAEGIPSY V,CORSETTI F A.Micrometer-scale porosity as a biosignature in carbonate crusts[J].Geology,2004,32(9):781-784.
    [46]沈吉云.微生物成因土工材料实验及应用研究[D].北京:清华大学,2009.SHEN Ji-yun.Experiments and applications of bio-geo materials[D].Beijing:Tsinghua University,2009.
    [47]THAWADI A S,CORD-RUWISCH R.Calcium carbonate crystals formation by ureolytic bacteria isolated from australian soil and sludge[J].Journal of Advanced Science&Engineering Research,2012,2(1):12-26.
    [48]CHENG L,QIAN C X,WANG R X.Study on the mechanism of calcium carbonate formation induced by carbonate-mineralization microbe[J].Acta Chimica Sinica,2007,65(19):2133-2138.
    [49]成亮,钱春香.生物矿化碳酸钙机理研究进展[J].硅酸盐通报,2006,25(6):108-116.CHENG Liang,QIAN Chun-xiang.Advances in the research of mechanism of biomineralizing calcium carbonate[J].Bulletin of the Chinese Ceramic Society,2006,25(6):108-116.
    [50]CHENG L,QIAN C X,WANG R X,et al.Study on kinetics and morphology of formation of CaCO3 crystal induced by carbonate-mineralization microbe[J].Journal of Functional Materials,2007,38(9):1511-1515.
    [51]NG W S,LEE L M,KHUN T C.Factors affecting improvement in engineering properties of residual soil through microbial-induced calcite precipitation[J].Journal of Geotechnical and Geoenvironmental Engineering,2014,140(5):04014006
    [52]ZHAO Q,LI L,LI C.Factors affecting improvement of engineering properties of MICP-treated soil catalyzed by bacteria and urease[J].Journal of Materials in Civil Engineering,2014,26(12):4014094.
    [53]SHARMA A,RAMKRISHNAN R.Study on effect of microbial induced calcite precipitates on strength of fine grained soils[J].Perspectives in Science,2016,8:198-202.
    [54]CHOU C W,SEAGREN E A,AYDILEK A H.Biocalcification of sand through ureolysis[J].Journal of Geotechnical and Geoenvironmental Engineering,2011,137(12):1179-1189.
    [55]KITAMURA M,KONNO H,YASUI A.Controlling factors and mechanism of reactive crystallization of calcium carbonate polymorphs from calcium hydroxide suspensions[J].Journal of Crystal Growth,2002,236(1-3):323-332.
    [56]HU Z,DENG Y.Supersaturation control in aragonite synthesis using sparingly soluble calcium sulfate as reactants[J].Journal of Colloid&Interface Science,2003,266(2):359.
    [57]FERRIS F G,PHOENIX V,FUJITA Y.Kinetics of calcite precipitation induced by ureolytic bacteria at 10 to20°C in artificial groundwater[J].Geochimica Et Cosmochimica Acta,2004,68(8):1701-1710.
    [58]VAN PAASSEN L A.Biogrout,ground improvement by microbial induced carbonate precipitation[D]Delft:Delft University of Technology,2009.
    [59]GILLMAN E,MORGAN M A,SHERWOOD M.Urease activity in irish soils at 6°C[J].Biology&Environment Proceedings of the Royal Irish Academy,1995,95B(1):19-26.
    [60]王瑞兴,钱春香,王剑云.微生物沉积碳酸钙研究[J].东南大学学报(自然科学版),2005,35(增刊1):191-195.WANG Rui-xing,QIAN Chun-xiang,WANG Jian-yun.Study on microbiological precipitation of CaCO3[J].Journal of Southeast University(Natural Science Edition),2005,35(Suppl.1):191-195.
    [61]SOMANI R S,PATEL K S,MEHTA A R.Examination of the polymorphs and particle size of calcium carbonate precipitated using still effluent(i.e.,CaCl2+NaCl Solution)of soda ash manufacturing process[J].Industrial&Engineering Chemistry Research,2006,45(15):5223-5230.
    [62]CHENG L,SHAHIN M A,CORD-RUWISCH R.Soil stabilisation by microbial-induced calcite precipitation(MICP):investigation into some physical and environmental aspects[C]//7th International Congress on Environmental Geotechnics:ICEG 2014.Barton:Engineers Australia,2014.
    [63]RODRIGUEZ-NAVARROC,RODRIGUEZ-GALLEGOM,BEN C K.Conservation of ornamental stone by Myxococcus xanthus-induced carbonate biomineralization[J].Applied&Environmental Microbiology,2003,69(4):2182-2193.
    [64]KEYKHA H A,ASADI A,ZAREIAN M.Environmental factors affecting the compressive strength of microbiologically induced calcite precipitation-treated soil[J].Geomicrobiology,2017,34(10):1-6.
    [65]BANG S C,MIN S H,BANG S S.Application of microbiologically induced soil stabilization technique for dust suppression[J].International Journal of Geo-Engineering,2011,3(2):27-37.
    [66]彭劼,何想,刘志明,等.低温条件下微生物诱导碳酸钙沉积加固土体的试验研究[J].岩土工程学报,2015,38(10):1769-1774.PENG Jie,HE Xiang,LIU Zhi-Ming,et al.Experimental research on influence of low temperature on MICP-treated soil[J].Chinese Journal of Geotechnical Engineering,2015,38(10):1769-1774.
    [67]WILEY W R,STOKES J L,WILEY W R.Requirement of an alkaline pH and ammonia for substrate oxidation by bacillus pasteurii[J].Journal of Bacteriology,1962,84(3):730-734.
    [68]RYZNAR-LUTY A,CIBIS E,KRZYWONOS M.Efficiency of aerobic biodegradation of beet molasses vinasse under non-controlled p H:conditions for betaine removal[J].Archives of Environmental Protection,2015,41(1):3-14.
    [69]HAMMES F,VERSTRAETE W.Key roles of pH and calcium metabolism in microbial carbonate precipitation[J].Reviews in Environmental Science and Biotechnology,2002,1(1):3-7.
    [70]ARUNACHALAM K D,SATHYANARAYANAN K S,DARSHAN B S.Studies on the characterisation of Biosealant properties of Bacillus sphaericus[J].International Journal of Engineering Science&Technology,2010,2(3).
    [71]MCWHIRTER M J,MCQUILLAN A J,BREMER P J.Influence of ionic strength and pH on the first 60 min of Pseudomonas aeruginosa attachment to ZnSe and to TiO2monitored by ATR-IR spectroscopy[J].Colloids&Surfaces B Biointerfaces,2002,26(4):365-372.
    [72]HARKES M P,VAN PAASSEN L A,BOOSTER J L.Fixation and distribution of bacterial activity in sand to induce carbonate precipitation for ground reinforcement[J].Ecological Engineering,2010,36(2):112-117.
    [73]NG W S,LEE L M,TAN C K.Improvements in engineering properties of soils through microbial-induced calcite precipitation[J].KSCE Journal of Civil Engineering,2013,17(4):718-728.
    [74]NEMATI M,GREENE E A,VOORDOUW G.Permeability profile modification using bacterially formed calcium carbonate:comparison with enzymic option[J].Process Biochemistry,2005,40(2):925-933.
    [75]ZHANG Y,GUO H X,CHENG X H.Influences of calcium sources on microbially induced carbonate precipitation in porous media[J].Materials Research Innovations,2014,18(Suppl.2):2-79.
    [76]MUYNCK D W,DEBROUWER D,BELIE D N.Bacterial carbonate precipitation improves the durability of cementitious materials[J].Cement and Concrete Research,2008,38(7):1005-1014.
    [77]ACHAL V,PAN X.Influence of calcium sources on microbially induced calcium carbonate precipitation by bacillus sp.CR2[J].Applied Biochemistry and Biotechnology,2014,173(1):307-317.
    [78]MORTENSEN B M,HABER M J,DEJONG J T.Effects of environmental factors on microbial induced calcium carbonate precipitation[J].Journal of Applied Microbiology,2011,111(2):338-349.
    [79]CHENG L,SHAHIN M A,CORD-RUWISCH R.Bio-cementation of sandy soil using microbially induced carbonate precipitation for marine environments[J].Géotechnique,2015,64(12):1010.
    [80]赵茜.微生物诱导碳酸钙沉淀(MICP)固化土壤实验研究[D].北京:中国地质大学(北京),2014.ZHAO Qian.Experimental study on soil improvement using microbial induced calcite precipitation(MICP)[D].Beijing:China University of Geosciences(Beijing),2014.
    [81]QABANY A A,SOGA K,SANTAMARINA C.Factors affecting efficiency of microbially induced calcite precipitation[J].Journal of Geotechnical&Geoenvironmental Engineering,2012,138(8):992-1001.
    [82]KUNST F,RAPOPORT G.Salt stress is an environmental signal affecting degradative enzyme synthesis in Bacillus subtilis[J].Journal of Bacteriology,1995,177(9):2403-2407.
    [83]RIVADENEYRA M A,DELGADO G,SORIANO M.Precipitation of carbonates by Nesterenkonia halobia in liquid media[J].Chemosphere,2000,41(4):617-624.
    [84]QIAN C X,WANG J Y,WANG R X.Corrosion protection of cement-based building materials by surface deposition of CaCO3 by Bacillus pasteurii[J].Materials Science and Engineering:C,2009,29(4):1273-1280.
    [85]NEKOLNY D,CHALOUPKA J.Protein catabolism in growing Bacillus megaterium during adaptation to salt stress[J].Fems Microbiology Letters,2000,184(2):173-177.
    [86]DEJONG J T,MORTENSEN B M,MARTINEZ B C,et al.Bio-mediated soil improvement[J].Ecological Engineering,2010,36(2):197-210.
    [87]VAN PAASSEN L.Ground improvement by microbially induced carbonate precipitation[D].Delft:Technology University of Delft,2009.
    [88]MONTOYA B M.Bio-mediated soil improvement and the effect of cementation on the behavior,improvement,and performance of sand[D].Davis:University of California,2012.
    [89]REBATA-LANDA V.Microbial activity in sediments:effects on soil behavior[doctor[D].Atlanta:Georgia Institute of Technology,2007.
    [90]AMARAKOON G G N N,KAWASAKI S.Factors Affecting the improvement of sand properties treated with microbially-induced calcite precipitation[C]//Congress Geo-Chicago:Sustainability,Energy and the Geoenvironment.Chicago:Geo-Chicago,2016.
    [91]崔明娟,郑俊杰,赖汉江.颗粒粒径对微生物固化砂土强度影响的试验研究[J].岩土力学,2016,37(增刊2):397-402.CUI Ming-juan,ZHENG Jun-jie,LAI Han-jiang.Experimental study of effect of particle size on strength of bio-cemented sand[J].Rock and Soil Mechanics,2016,37(Suppl.2):397-402.
    [92]KIM D,PARK K,KIM D.Effects of ground conditions on microbial cementation in soils[J].Materials,2013,7(1):143.
    [93]JOER H,RANDOLPH M,MERITT A.Cementation of porous materials using calcite[J].Géotechnique,2002,52(5):313-324.
    [94]ROWSHANBAKHT K,KHAMEHCHIYAN M,SAJEDIR H.Effect of injected bacterial suspension volume and relative density on carbonate precipitation resulting from microbial treatment[J].Ecological Engineering,2016,89:49-55.
    [95]MéTAYER-LEVREL G L,CASTANIER S,ORIAL G.Applications of bacterial carbonatogenesis to the protection and regeneration of limestones in buildings and historic patrimony[J].Sedimentary Geology,1999,126(1-4):25-34.
    [96]WHIFFIN V S,VAN PAASSEN L A,MARIEN P.Microbial carbonate precipitation as a soil improvement technique[J].Geomicrobiology Journal,2007,24(5):417-423.
    [97]TOBLER D J,MACLACHLAN E,PHOENIX V R.Microbially mediated plugging of porous media and the impact of differing injection strategies[J].Ecological Engineering,2012,42(5):270-278.
    [98]CHU J,IVANOV V,NAEIMI M.Optimization of calcium-based bioclogging and biocementation of sand[J].Acta Geotechnica,2014,9(2):277-285.
    [99]崔明娟,郑俊杰,章荣军,等.化学处理方式对微生物固化砂土强度影响研究[J].岩土力学,2015,36(增刊1):392-396.CUI Ming-juan,ZHENG Jun-jie,ZHANG Rong-jun,et al.Effect of method of biological injection on dynamic behavior for bio-cemented sand[J].Rock and Soil Mechanics,2015,36(Suppl.1):392-396.
    [100]许朝阳,王海波,柏庭春,等.电渗生物法灌浆改善粉土中碳酸盐沉积分布的试验研究[J].工业建筑,2017,47(4):80-85.XU Chao-yang,WANG Hai-bo,BAI Chun-ting.Experimental study of improving carbonate deposition distribution in silt by EBM grouting[J].Industrial Construction,2017,47(4):80-85.
    [101]JIANG N J,YOSHIOKA H,YAMAMOTO K,et al.Ureolytic activities of a urease-producing bacterium and purified urease enzyme in the anoxic condition:implication for subseafloor sand production control by microbially induced carbonate precipitation(MICP)[J].Ecological Engineering,2016(90):96-104.
    [102]GAT D,TSESARSKY M,SHAMIR D.Accelerated microbial-induced CaCO3 precipitation in a defined co-culture of ureolytic and non-ureolytic bacteria[J].Biogeosciences Discussions,2014,10(11):17249-17273.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700